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ABSTRACT

Both linear and nonlinear electromagnetic waves are ubiquitous in the magnetosphere. In this

study, the problem of waves, which previously had been identified as electrostatic ion cyclotron

waves, but now have been found to have magnetic as well as electric fluctuations, is examined.

Cold and kinetic dispersion relations are used to study these waves, and the results support the

idea that these ion cyclotron waves are actually a generalized EIC wave mode that has magnetic,

as well as electric, field fluctuations.

Solitary waves are isolated, nonlinear waves which travel parallel to the background mag-

netic field and have been observed throughout the magnetosphere. Solitary waves are divided

into two classes: slower waves which are associated with ion beams, and faster waves which are

associated with electron beams. In this study, solitary waves are examined both observationally

and through the use of computer simulations. The computer simulations of solitary waves use

ES2, a 2.5D particle-in-cell simulation. The observations of solitary waves rely on data from

EFI, the Polar spacecraft’s electric field instrument. Solitary wave characteristics, including

the speeds, electric potential, and spatial extent, are presented from and compared between

the observations and simulations. These results show that the speeds of the ion solitary waves

lie between the hydrogen and oxygen beam speeds, which supports the theory that ion solitary

waves may form from two-stream interactions between ion beams. These observations and sim-

ulations also show that the scale size of solitary waves is roughly 22 Debye lengths in both the

directions parallel and perpendicular to the background magnetic field. High altitude electron

solitary waves in this study are found to have speeds of thousands of km/s and have potential

amplitudes that are directly proportional to their scale size parallel to the magnetic field. The

median parallel scale sizes for the electron solitary waves are approximately 15 Debye lengths.

Though perpendicular scale sizes cannot be observed directly, the ratio of the parallel electric
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field to the perpendicular electric field, which should scale as the ratio of the perpendicular to

parallel scale size, matches a theoretical predicted relation for electron solitary waves.
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Chapter 1

Introduction

The magnetosphere is the region of space where the Earth’s magnetic field is the dominant

magnetic field which controls much of the motion of particles. It is located between the Earth’s

atmosphere, where neutral gases are dominant, and interplanetary space, which is dominated

by the solar wind. In the magnetosphere the dominant form of matter is plasma. The plasma

is usually collisionless. Due to the charges on the particles in the plasma, electric and mag-

netic fields are ubiquitous and dynamic in the magnetosphere. One area where particularly

interesting waves are seen is the auroral acceleration region. In this region the electrons which

cause the aurora are accelerated. Some of the waves seen in this region (Figure 1.1) are the

subjects of my research. The large spikes seen in the top panel of Figure 1.1 are solitary waves

which are observed as non-linear electric field structures that travel parallel to the background

magnetic field and are introduced in Chapter 3. The waves in the bottom panel of Figure 1.1

are ion cyclotron waves which are linear mode1 with electric fields perpendicular to the back-

ground magnetic field and are described further in Chapter 2. These linear and nonlinear waves

within the magnetospheric plasma will be the focus of this study. To motivate the discussion

of the waves, this chapter provides a brief introduction to the magnetosphere and the aurora.

More detailed introduction to these topics can be found in many sources including: Parks

[1991], Baumjohann and Treumann [1997], Kelley and Heelis [1989], Kivelson et al. [1995],

1



and Suess and Tsurutani [1998]. Section 1.1 discusses the magnetosphere in general, and in-

troduces some of the regions of the magnetosphere discussed later. Section 1.2 discusses the

origins of the aurora and the waves seen in the region where the aurora is generated.

1.1 Magnetospheric Topography

The magnetosphere has several distinct regions which have very different characteristics (Fig-

ure 1.2). Typical plasma parameters for several of the regions mentioned below are included in

Table 1.1. The first feature of the magnetosphere, if one heads toward the Earth from the Sun,

is the bow shock, which is located roughly 10–15 Earth radii (RE) from the Earth. The bow

shock is caused by the super Alfvénic solar wind encountering an obstruction in the form of

the Earth’s magnetic field. This shock, when viewed in the rest frame of the Earth, is somewhat

analogous to the wave in front of a boat seen from the boat’s frame when it travels through

water. The characteristics of this shock are complicated, though, by the fact that the fluid in

this case is a collisionless plasma.

The solar wind is diverted by the Earth’s magnetic field at the bow shock, but the transi-

tion to the region dominated by the Earth’s magnetic field occurs at the magnetopause. The

magnetopause separates the Earth’s magnetic field and plasma from the solar wind and the in-

terplanetary magnetic field (IMF). The magnetopause occurs at the place where the magnetic

and plasma pressure from the magnetosphere balance the dynamic pressure of the solar wind.

The region between the magnetopause and the bow shock is a region called the magnetosheath.

The magnetosheath serves as a transition between the dense, cool, but quickly moving solar

wind plasma and the less dense, hot, and slower moving magnetospheric plasma. The mag-

netosheath plasma tends to flow past the magnetosphere and eventually merge back into the

solar wind far downstream. Some magnetosheath plasma enters the magnetosphere through

magnetic reconnection, both at the dayside and tail portions of the magnetopause.

The part of the magnetosphere which stretches out behind the Earth in the anti-sunward

2



Figure 1.1: This figure shows sample solitary waves and ion cyclotron waves as observed by the

Polar spacecraft. The top panel shows the electric field parallel to the background magnetic field

measured in mV/m. The bottom panel shows the a component of the electric field perpendicular

to the background magnetic field. Solitary waves are the isolated bipolar structures in the

parallel electric field which are most evident between 00:57:30 and 00:57:31 in this figure.

Solitary waves are the subject of Chapters 3 through 7. The waves seen in the perpendicular

direction are ion cyclotron waves, which are the subject of Chapter 2.

3



Figure 1.2: An overview of the magnetosphere and the regions within it [Kelley and Heelis,

1989].
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Region Number Density (cm−1) Temperature (eV)

Solar Wind 10 10

Plasmasphere 1000 10

Ring Current 0.5 105

Radiation Belts 0.5 106

Plasma sheet 5 1000

Tail Lobe 0.1 1000

Auroral Acceleration Region 106 10

Table 1.1: Magnetospheric Plasma Parameters [Parks, 1991; Baumjohann and Treumann,

1997]

direction is known as the magnetotail. Just as the bow shock is analogous to the wave in front

of a boat moving through water, the magnetotail is like the wake behind the boat. The length

of the magnetotail (∼ 100-200 RE) and its characteristics depend strongly on the solar wind

conditions. The outer parts of the magnetotail are the lobes, which have very low density

or on open field lines. The nearer and more central region of the tail is called the plasma

sheet. This region contains relatively hot and medium density particle distributions. Near the

magnetopause, in the polar region, is a layer called the cusp which is the place where the

magnetic field is expected to be zero in closed field line models of the magnetosphere. The

region between the lobes and the plasma sheet is the plasma sheet boundary layer. This area

is interesting because its field lines map down to the auroral oval, and field-aligned flows of

particles often occur in this region, both towards the tail and towards the auroral oval, as well

as Poynting fluxes associated with Alfvèn waves.

In still closer to the Earth and at low latitudes, and overlapping in space, are the radiation

belts, ring current, and the plasmasphere. This area of the magnetosphere corotates with Earth

unlike most regions of the magnetosphere. The plasmasphere is dense and cold. Since it is the

portion of the magnetosphere that borders on the ionosphere at lower latitudes, it gets its cold

5



plasma from the ionosphere. The radiation belts are highly energetic particles which have been

trapped by the Earth’s magnetic field. Ring current particles have a temperature between that

of the plasmasphere and the radiation belts. The ring current gets its name because the elec-

trons and ions drift in opposite directions around the Earth, due to the Earth’s dipole magnetic

field, forming an electric current. Finally, the innermost region of the magnetosphere is the

ionosphere. This region serves as the transition between the rest of the magnetosphere, which

is plasma dominated, and the atmosphere, which is dominated by neutral atoms and molecules.

In contrast to the rest of the magnetosphere, the plasma in the ionosphere is collisional which

changes the plasma dynamics in this region.

1.2 The Aurora

The Aurora Borealis (or Australis) are colored light displays often visible at night at high

latitudes. The aurora is caused by precipitation of energetic (up to a tens of keV) electrons into

the ionosphere. These energetic electrons interact with the neutral ionospheric gas, causing the

excitation of electrons in some of the gas. When these electrons fall back to their ground states,

they give off light at discrete wavelengths, some of which are visible. These visible emissions

lead to the distinctive greens, blues and reds of the aurora.

Most aurora occur near the poles in a region called the auroral oval. The size and shape of

the auroral oval changes depending on the conditions in the magnetosphere. On average it is

a band about 20◦ in radius and 5◦ wide and it is centered 5◦ to the night side of the magnetic

pole (Figure 1.3). This auroral oval is at the same location where upward and downward field-

aligned currents are seen in the ionosphere (Figure 1.4). These currents are associated with

convection occurring in the magnetosphere and ionosphere and with the ring current.

One of the most interesting questions in magnetospheric physics involves what causes the

acceleration of auroral particles. The auroral electrons must have energies of at least 100 eV

(and up to & 10 keV), but the thermal energies in this auroral region are much lower (∼ 1 eV),

6



Figure 1.3: This figure shows the regions where the aurora are typically observed.
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Figure 1.4: The field-aligned currents in the polar region of the ionosphere [Iijima and Potemra,

1976].
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though there are often hotter plasma sheet particles as well [Parks, 1991]. It is generally agreed

that there must be electric fields aligned parallel to the magnetic field which accelerate the

electrons to the necessary energy. This parallel electric field is believed to be caused by a quasi-

static potential drop along the magnetic lines in the auroral acceleration region, though the

details of the processes that sustain this potential drop are not entirely worked out [Ergun et al.,

1998c; McFadden et al., 1999a; Mozer and Kletzing, 1998]. It is also believed that the region

in which electrons are accelerated is roughly located between 1400 and 14000 km up auroral

magnetic fields lines from the surface of the Earth [Reiff et al., 1993].

Though the details of the generation of the quasi-static potential have not all been worked

out, both linear and nonlinear waves have been observed in this region. These waves are seen in

association with field-aligned currents and with ion and electron beams, which probably serve

as their source of free energy. Though the role that these waves play in auroral acceleration

is not completely understood, studying them should provide some insight into the interrelation

of waves, currents, and particle acceleration. Study of the physical processes involved in the

acceleration of auroral particles is important not only for better understanding of the aurora, but

also because the the processes involved may be applicable elsewhere. In particular, accelera-

tion processes are an important topic of research in many astrophysical settings. The processes

which cause the acceleration of some high energy cosmic rays are one example of an astro-

physical problem where acceleration mechanisms are being studied. The availability of in situ

measurements in the magnetosphere leads to the opportunity to probe auroral acceleration pro-

cesses in ways which are unavailable for astrophysical processes. So understanding the causes

of the aurora may also illuminate the physics of other regions.

1.3 Outline

The remainder of this thesis discusses linear and non-linear waves in the magnetosphere, with

emphasis on waves in the auroral acceleration region. Chapter 2 deals with cold and kinetic
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linear dispersion of these waves and the use of these dispersion relations to study ion cyclotron

waves in the auroral acceleration region. Later chapters deal with solitary waves, which are non-

linear waves seen in boundary layers throughout the magnetosphere, though most notably in the

auroral acceleration region. Chapter 3 reviews previous observations, theories, and simulations

of solitary waves. The methods and programs used to simulate solitary waves in this work are

covered in Chapter 4, while the results of those simulations are covered in Chapter 6. The

observational techniques used to study solitary waves in this thesis are covered in Chapter 5,

while the results from these observations are covered in Chapter 7. Finally, a summary of the

conclusions of this work and suggestions for future study is presented in Chapter 8.
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Chapter 2

Linear Waves and Dispersion

Relations

There are many different types of plasma waves in the magnetosphere. As a first approximation,

some of these waves can be studied using fairly simple assumptions and methods. In many

cases waves within plasmas can be treated as linear, even though the fundamental equations

used to describe a plasma have nonlinear terms. These nonlinear terms can often be dropped

if the perturbations in density, electric field, and magnetic field caused in the plasma are small

enough. Linear waves also have the property that, if more than one wave is present, they can

simply be superposed. In general, two nonlinear waves overlap to create an overall wave which

is not necessarily a simple superposition of the two.

To study linear waves in plasmas, the equations describing the waves must be linearized.

This involves using perturbation theory on Maxwell’s equations. The variables in the equations,

such as the electric and magnetic fields, are separated into constant, background portions and

varying, wave portions. Then the terms of order 2 or higher in the small perturbation variables

are dropped. This leads to equations which are first order in these wave variables and the system

can be solved using linear techniques. Studying these linear waves can be an important method

of learning about physical processes in the magnetosphere.
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This chapter begins with a discussion of observations of ion cyclotron waves in the auroral

acceleration region which motivate this study of linear waves. Then the utility of dispersion

relations is discussed. The dispersion relation in the case of a cold, magnetized plasma is next

derived and this dispersion relation is used to study the ion cyclotron in the auroral acceleration

region. Since the cold plasma approximation is not satisfied in the observations of the ion cy-

clotron waves, the kinetic dispersion relation must be applied to these observations. The results

from the kinetic dispersion relation are then compared to the results from the cold dispersion

relation.

2.1 Motivation

The motivation for calculating the cold dispersion relation was to analyze the properties of ion

cyclotron waves that are seen in the auroral acceleration region. Ion cyclotron waves are often

seen in association with ion or electron beams. The waves usually propagate at an angle that

is almost perpendicular to the background magnetic field. These waves are seen at the O+

and He+ cyclotron frequencies, as well as the H+ cyclotron frequency. Also, magnetic field

components are sometimes, but not always seen, with these waves.

Wave modes with frequencies just above the multiples of the ion cyclotron frequency were

typically identified as electrostatic ion cyclotron (EIC) waves [Kintner et al., 1979; Cattell et al.,

1991]. Typically it is assumed that EIC waves have no magnetic fluctuation, which was con-

sistent with these early observations. Some of the earlier spacecraft did not have instruments

that were capable of measuring these magnetic fluctuations. More recent observations of ion

cyclotron waves with the FAST (Fast Auroral SnapshoT) spacecraft, which is capable of mea-

suring magnetic fluctuations, have shown that the ion cyclotron waves, with frequencies both

above and below the ion cyclotron frequency, often have magnetic fluctuations [Chaston et al.,

1998]. An example of these cyclotron waves observed by the FAST spacecraft is shown in Fig-

ure 2.1. Another type of cyclotron wave known as the electromagnetic ion cyclotron (EMIC)
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Figure 2.1: Plotted above is FAST spacecraft observations of ion cyclotron waves in the au-

roral acceleration region. The top three panels show the electric field in magnetic field-aligned

coordinates (where z is along the magnetic field direction) measured in mV/m. The bottom

three panels show the magnetic field in the same coordinates measured in nT. The ion cyclotron

waves are the oscillations in the x and y components of the electric field. The smaller magnetic

oscillations are also apparent in the x and y components. These waves are occurring just above

the ion cyclotron frequency, where EIC waves are expected [plot from Chaston et al., 1998].
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wave does have magnetic perturbations. EMIC waves only occur below the ion cyclotron

frequency (the frequency of EMIC waves approaches the ion cyclotron frequency as the the

wavenumber goes to infinity, while the frequency of EIC waves approaches the ion cyclotron

frequency as the wavenumber approaches 0). EMIC waves have also been identified in the au-

roral zone [Temerin and Lysak, 1984]. Observations of waves at frequencies where EIC waves

are expected (just below the ion cyclotron frequency) that have magnetic fluctuations motivate

this study to find the exact mode that is being observed.

2.2 Dispersion Relations

Dispersion relations are an important tool for the study of plasma waves, since they encapsulate

much of the information about wave modes. A dispersion relation shows the angular frequency

(ω) as a function of wavenumber (k). An example of a dispersion relation, which is derived in

Section 2.3, is shown in Figure 2.4. The dispersion relation also illustrates the phase velocity

(vphase = ω
k

) and the group velocity (vgroup = ∂ω
∂k

) of wave modes. Reflection points for wave

modes are seen on dispersion relations as the places where the wave number goes to 0 (infinite

phase velocity). Resonance points, where wave modes can transfer energy to the plasma, are

locations where the wave number hits a limiting value (zero phase velocity). The imaginary

portion of the frequency (which is not presented here) is the growth rate for the wave mode,

so this imaginary portion is crucial for examining what modes are expected to be observed in

various plasma conditions.

2.3 Cold Dispersion Relations

A simple case, which yields many of the wave modes of interest in a plasma, is to consider

waves in a cold, magnetized plasma from a fluid perspective. Looking at the cold dispersion

relationship gives insight into the properties of plasma waves at a fairly basic level. Cold

dispersion relations can function as a first approximation for waves, though the validity of
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that approximation varies depending on plasma properties. Hot plasmas cause changes to the

characteristics of the waves, which cannot be accounted for with a cold dispersion relation.

2.3.1 Theory

The dispersion relation for these wave modes can be found by starting from the single particle

equation of motion

nsms
d~vs

dt
= ns( ~E +

~vs

c
× ~B) − ~∇ ·

↔
Ψs (2.1)

[following from Stix, 1992]. In this equation ns is the number density of plasma species s, qs is

the charge on that species, ~vs is the velocity, ~E is the electric field, ~B is the magnetic field, and
↔
Ψs is the fluid stress tensor.

↔
Ψs is 0 because of the assumption that the plasma is cold, which

means that the plasma’s pressure is 0. By using perturbation theory to linearize equation 2.1,

and then Fourier transforming it, equation 2.2 results.

−iωms~vs = qs( ~E +
~vs

c
× ~B0) (2.2)

Since one form of Gauss’s Law is:

~∇ · ~E = 4π(ρ − ~∇ · ~P ) = 4π

(

∑

s

nsqs − ~∇ · (χ↔s · ~E)

)

(2.3)

the solution of Equation 2.2 leads to the susceptibility, χ↔s, for each species. The susceptibility

is related to the dielectric tensor, ε↔,

ε↔ =













ε⊥ −iεx 0

iεx ε⊥ 0

0 0 ε‖













where: ε⊥ = 1 −
∑

s

ω2
ps

ω2 − Ω2
s

, εx =
∑

s

εsωps

ω

ω2
ps

ω2 − Ω2
s

,

ε‖ = 1 −
ω2

p

ω2
, εs = ±1 for ions/electrons,

Ωs = |
qsB

msc
| , ωps =

4πnse
2

ms
, ωp =

∑

s

ωps

(2.4)
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by

ε↔ = 1
↔

+
∑

s

χ↔s (2.5)

Here, Ωs is the cyclotron frequency and ωps is the plasma frequency for a given species. To

find the dispersion tensor, two of Maxwell’s equations:

~∇× ~B =
1

c

∂ ~D

∂t
(2.6)

~∇× ~E = −
1

c

∂ ~B

∂t
(2.7)

are linearized, Fourier transformed, and combined to obtain:

↔
D = ε↔− n2(I

↔
− k̂k̂) where: n =

kc

ω
, k̂ = sin θx̂ + cos θẑ (2.8)

The wavevector is k̂ and the angle that the wavevector makes with respect to the background

magnetic field is θ. The dielectric tensor is then used to get the dispersion tensor,
↔
D, using

equation 2.8. This leads to the dispersion tensor:

↔
D =













ε⊥ − n2 cos2 θ −iεx n2 cos2 θ sin θ

iεx ε⊥ − n2 0

n2 cos2 θ sin θ 0 ε‖ − n2













(2.9)

The eigenmodes of the dispersion tensor give the modes of waves that are allowed to propagate.

These can be found by taking the determinant of Equation 2.9. This leads to an equation:

An4 + Bn2 + C = 0 where: A = ε⊥ sin2 θ + ε‖ cos2 θ

B = (ε2
⊥ − ε2

x) cos2 θ + ε⊥ε‖(1 + cos2 θ)

C = ε‖(ε
2
⊥ − ε2

x)

(2.10)

that is quadratic in n2 which can be solved for n(k, θ) or ω(k‖, k⊥).

Equation 2.10 is plotted for cases of parallel and perpendicular propagation, in Figures 2.2

and 2.3 respectively, for a plasma consisting of only equal numbers of protons and electrons.
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Figure 2.2: The parallel linear dispersion relation for a cold magnetized plasma with one

species each of electrons and protons. The most common wave modes are labeled.
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Figure 2.3: The perpendicular linear dispersion relation for a cold magnetized plasma with one

species of each of electrons and protons. The most common wave modes are labeled.
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These cases were chosen because they show some of the basic plasma wave modes that are

often observed in the magnetosphere.

The polarization of the parallel propagating modes is either left (L) or right (R) circular

polarization, and two of these modes have resonances at the ion (Ωi) and electron cyclotron

(Ωe) frequencies. The higher frequency right and left modes have cutoffs (reflection points)

at the right
(

ωr = 1

2

(

Ωe +
√

Ω2
e + 4ω2

p

))

and left
(

ωl = 1

2

(

−Ωe +
√

Ω2
e + 4ω2

p

)

)

fre-

quencies, respectively. In the perpendicular propagation case the ordinary (O) mode has its

electric field parallel to the background magnetic field. The O mode cuts off at the plasma

frequency and it becomes a light wave at high frequencies. The extraordinary (X) modes, have

elliptical polarization with the wave electric field perpendicular to the background magnetic

field direction. The X modes have resonances at the upper

(

ωUH =
√

ω2
pe

+ Ω2
e

)

and lower
(

ωLH =

√

Ω2
i +

ω2
pi

1+
ω2

pe

Ω2
e

)

hybrid frequencies, as well as cutoffs at the right and left frequen-

cies. Notice that in both parallel and perpendicular cases there is a wave mode that has a

resonance at the ion cyclotron frequency. These modes is also known as the EMIC mode. The

EIC mode is not visible on these plots since its derivation requires a warm plasma.

Further information can be obtained from the dispersion relations for these waves. The ratio

of electric to magnetic field for the waves can be obtained using ~E ·
↔
D, which is a form of

the wave equation, Ey and Ez can be determined in terms of Ex. Then the magnetic field

components can be found in terms of Ex using a linearized and Fourier transformed form of

Faraday’s Law:

~B = n̂ × ~E (2.11)

These components can be combined to find the ratio of the total wave electric field strength to

the wave magnetic field strength.
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Species n (cm−3) Vdrift (km s1) T⊥ (eV) T‖ (eV)

e− (beam) 0.50 6610 200 25

e− (background) 0.10 0 10 10

H+ (plasma sheet) 0.10 0 3740 5240

H+ 0.27 0 80 380

He+ 0.15 0 100 200

O+ 0.08 0 100 300

Table 2.1: Parameters obtained from FAST data and used for Figures 2.4 - 2.7

2.3.2 Application to FAST data

The cold dispersion relation can be used as a first approximation for studying the waves dis-

cussed in Section 2.1 and shown in Figure 2.1. The plasma characteristics present when these

waves were observed [Cattell et al., 1998] are given in the Table 2.1. The plasma in this case

consisted of two populations of electrons, with one of these populations moving upward, and

four species of ions. The waves of interest were propagating almost perpendicular to the back-

ground magnetic field at frequencies just above the ion cyclotron frequency. The cold disper-

sion relation and field strength ratios for waves, assuming that these waves are propagating at

80◦, are shown in Figures 2.4 and 2.5. This dispersion relation shows that there is a resonance

at the hydrogen cyclotron frequency, just as in the two component plasma case. The electric

to magnetic field ratio is less than the speed of light at the region of interest near the hydro-

gen cyclotron frequency, which implies that the magnetic field is dominating in this region.

These results are limited by the fact that the plasma involved is not actually cold. These limita-

tions will be discussed when these cold dispersion relation results are compared to the kinetic

dispersion relation results in Section 2.4.2.
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Figure 2.4: Shown above is the cold plasma linear dispersion relation for the FAST spacecraft

event shown in Figure 2.1. This dispersion relation is for waves propagating at angle of 80◦

to the background magnetic field. This plot is obtained by solving equation 2.10. The plasma

parameters used for this case are shown in Table 2.1. Compare this plot to Figure 2.6 which is

the kinetic version of this dispersion relation.
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Figure 2.5: Shown above is the ratio of the electric field to magnetic field for the FAST space-

craft event shown in Figure 2.1. These results correspond to the dispersion relation results

shown in Figure 2.4 and are for waves propagating at angle of 80◦to the background mag-

netic field. Compare this plot to Figure 2.7 which is the kinetic version of this electric field to

magnetic field ratio.

22



2.4 Kinetic Dispersion Relations

To overcome the limitations of the cold dispersion relation, the previous studies were redone

with a computer code that uses a fully kinetic model to solve for the wave modes for hot plasmas

[Rönnmark, 1983]. The kinetic approach used here assumes that the particle distributions are

Maxwellian, or at least bi-Maxwellian (where T‖ 6= T⊥). This approach better describes the

wave modes observed because, as seen in Table 2.1, the plasma components are hot in the

regions where these cyclotron waves are observed.

2.4.1 Theory

The method used to find the kinetic dispersion relation is very similar to the method for the

cold case, though it is more complicated due to additional terms caused by the hot plasma. The

susceptibilities, in this case, are derived by first linearizing and Fourier transforming Vlasov’s

equation:

∂fs

∂t
+ ~v ·

∂fs

∂~r
+

qs

ms
( ~E +

~v

c
× ~B) ·

∂fs

∂~v
= 0 where fs is the distribution function (2.12)

This equation is solved by combining it with linearized and Fourier transformed forms of

Maxwell’s equations, and then integrating it [Stix, 1992]. The details, which are similar to

the cold case though more mathematically complicated, will be omitted here.

2.4.2 Application to FAST data

Results of this fully kinetic approach, for the same FAST event as was shown using the cold

dispersion relation, are shown in Figures 2.6 and 2.7. For the kinetic case, four different prop-

agation angles between 75◦ and 90◦ are shown. In order to facilitate comparison between

these plots and the previous plots, which are in different units, common locations are marked

on each plot. By comparing the dispersion relation plots (Figures 2.4 and 2.6), it is evident

that the kinetic dispersion relation differs from the cold dispersion relation. Both plots have

the same general shape, with the wavenumber starting out low and leveling off at or near the
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Figure 2.6: Shown above is the kinetic linear dispersion relation for the FAST spacecraft event

shown in Figure 2.1. This plot is obtained by solving equation 2.12. The plasma parameters

used for this case are shown in Table 2.1. Compare this plot to Figure 2.4 which is the cold

plasma version of this dispersion relation.
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hydrogen cyclotron frequency, but the kinetic dispersion relation plot levels out at a much

lower wavenumber. Also, in the cold case the dispersion relation asymptotically approaches

the hydrogen cyclotron frequency, while in the kinetic case, the dispersion relation levels off

somewhat, but still continues to climb. This hints that this wave mode is a combination of the

EMIC mode, which always has a frequency less than the ion cyclotron frequency, and the EIC

mode which always has a frequency above the ion cyclotron frequency.

The differences in the ratios of electric to magnetic field are also dramatic (Figures 2.5

and 2.7). In the cold case, the ratio goes toward 0 as the frequency approaches the hydrogen

cyclotron frequency, while in the kinetic case, the ratio has a maximum just above the hydrogen

cyclotron frequency. The difference in the magnetic field characteristics of the wave mode

is important because the ion cyclotron waves measured by FAST had magnetic fluctuations.

Chaston et al. [1998] found that the ratio of electric to magnetic field ≥ c for cyclotron waves

with frequencies above Ωp, and ≤ c (roughly the Alfvèn speed) for waves with frequencies

below Ωp, which roughly agrees with the results shown in Figure 2.7.

An electromagnetic extension of EIC waves has been completed in order to help explain

these observations of electromagnetic waves just above the ion cyclotron frequency [Bergmann et al.,

1998]. This formulation relies on adding the magnetic field component of the EIC wave as a

perturbation on the usual formulation of the EIC wave. It should be noted that these generalized

EIC waves are not the same as electromagnetic ion cyclotron (EMIC) waves, though this mode

could be considered a combination of these two modes. The resulting generalization of EIC

waves gives results that agree with the results shown in Figures 2.7 and 2.6. So these cyclotron

waves that have magnetic components which are observed in the auroral acceleration region

are likely generalized EIC waves and they can be studied using the kinetic dispersion relation,

but not the cold dispersion relation. From these results it is clear that for particle populations

that are hot, it is important to use the kinetic dispersion relation.
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Figure 2.7: Shown above is the ratio of the electric field to magnetic field for the FAST space-

craft event shown in Figure 2.1. These results correspond to the dispersion relation results

shown in Figure 2.6. Compare this plot to Figure 2.5 which is the cold plasma version of this

electric field to magnetic field ratio.
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2.5 Conclusion

Study of dispersion relations and the related information that dispersion relations provide is

an important method for understanding waves observed in the magnetosphere. In the cold

approximation of the dispersion relation, the temperature of the plasma particles is assumed to

be 0. Because they are relatively easy to solve analytically, cold dispersion relations are useful

for providing insight into basic plasma modes. They provide a good starting point for the study

of linear plasma waves, but in many cases more detailed analysis requires that the full kinetic

dispersion relation must be solved. In most cases, the kinetic dispersion relation must be solved

numerically.

The comparison of cold and kinetic dispersion relations here is applied to FAST spacecraft

observations of cyclotron waves in auroral zones. Waves with frequencies just above multiples

of the ion cyclotron frequency were previously typically classified as EIC waves, since there

were no observations of magnetic components of these waves. Recent FAST observations of

these waves show magnetic components to these waves and theoretical work on these waves

suggest that their mode is a magnetic generalization of EIC waves. The dispersion relation

results presented here show that the cold dispersion relation is not sufficient to study these gen-

eralized EIC waves, since the ratio of electric to magnetic field does not match the observations.

On the other hand, kinetic dispersion relation results do match the FAST observations as well

as the theory for generalized EIC waves.
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Chapter 3

Solitary Waves

Many types of nonlinear waves are seen in the magnetosphere. The focus of this paper will

primarily be several related types of nonlinear waves. Solitary waves are structures that are not

periodic and continuous. They often look like an isolated half or full wavelength of a linear

wave mode. These waves are also observed as a depletion or increase of the plasma density

that also coincides with a change in the electrostatic potential. These structures are not static

and they propagate in the direction of the background magnetic field. An example of solitary

wave observations from the Polar spacecraft is shown in Figure 1.1. The solitary waves are

the isolated spikes in the electric field in the direction parallel to the magnetic field which are

shown in the top panel of that figure.

Solitons are a specific type of solitary wave that have very definite properties; most im-

portantly to this work, the amplitude is inversely proportional to the width. Another well

known feature is that is that two solitons will pass through each other undisturbed. It is this

particle-like characteristic of solitons that led to their name. The history of solitons is an in-

teresting one [Allen, 1998], with solitons first being seen as water waves in canals in England

[Russell, 1845]. The first theoretical work describing them was done by Rayleigh [1879], and

Korteweg and de Vries [1895] found the first equation describing a solitary wave (the KdV

equation).

28



Double layers consist of two layers of separated charge that have an electric field between

them. Since these double layers are formed by separated charge, they must violate quasi-

neutrality. Quasi-neutrality is the assumption that the charges in the plasma balance each other

out leaving a plasma that is essentially neutral over macroscopic scales. The scale over which

charges in a plasma are screened out by charges of the opposite sign is the Debye length
(

λD =
√

kT
4πne2

)

, though this assumes that the potential caused by the charge is small (φ � kT ).

Strong double layers are structures where the electrostatic potential drop associated with charge

separation is much larger than the temperatures or beam energies of the ions or electrons. In a

strong double layer net charge builds up on scales & λD due to the flow of ions and electrons

into the structure [Borovsky, 1992]. Weak double layers, on the other hand, have electrostatic

potential drops which are less than the order of the electron temperature. A weak double layer

is a solitary wave where the electric field signal of the pulse is asymmetric, so that there is a net

potential drop across the structure. Electrostatic shocks are believed to be strong double layers

which are aligned at an angle to the background magnetic field, instead of parallel to the field

like double layers [Ergun et al., 1998c; McFadden et al., 1999a]. Since these structures are at

oblique angle to the magnetic field, they accelerate particles both parallel and perpendicular to

the background magnetic field.

One of the reasons that these nonlinear waves are of interest is because they might play a role

in the parallel potential (which was mentioned in Section 1.2) that accelerates auroral electrons

and ions. The structures mentioned above all cause electric fields parallel to the background

magnetic field, so they all (except solitons which have symmetric potentials) could possibly

sustain the parallel potential drop. The relationship of these waves to the parallel potential drop

will be expanded on later in this chapter.
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3.1 Solitary Structure Observations

The first double layers in the magnetosphere were observed by the S3-3 satellite [Temerin et al.,

1982] in the auroral acceleration region. These structures have since been classified as weak

double layers since they had small potential amplitudes. The Viking satellite confirmed the

S3-3 observations of double layers in approximately the same region [Boström et al., 1988].

In addition, solitary waves with no net potential drop were also seen near these weak double

layers. Furthermore, upward traveling ion beams were also seen at the same time the double

layers were observed. Upward moving ions have been observed in this region at times when

weak double layers were not observed, but these weak double layers have not been observed

without upward traveling ions. This part of the observation has lead to the speculation that these

weak double layers do not cause the parallel potential drop, though the fact that ion beams are

observed more often than solitary waves is not very strong evidence concerning the effects of

solitary waves. It is possible that solitary waves cause the ion beams, but have shorter lifetimes

than ion beams causing them to be observed less often. Instead, it is thought more likely

weak double layers are a result of the potential drop which also drives the ion beams, since

the average net potential drop across weak double layers is small [Mälkki et al., 1993]. Also,

for weak double layers to be the cause of auroral acceleration there would have to be a large

number of them along each auroral field line, and it is uncertain that enough of such structures

have been observed [Koskinen and Mälkki, 1993]. Recent observations by the Polar spacecraft

have added to the debate [Mozer et al., 1997, see Figure 3.1]. This satellite, which was also

making measurements in the auroral zone, has measured solitary structures that were much

stronger than those previously measured. The parallel electric fields measured in some of these

structures were 200 mV/m, while typical measurements for S3-3 were 10 mV/m. The largest

structures seen in this case were not double layers, but were instead symmetric solitary waves.

There were double layers present, but they were weak. More recently [Mozer and Kletzing,

1998], the Polar satellite has observed structures that have net potential drops with similar

strong electric fields (Figure 3.2). These observations are believed to be strong double layers.
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Figure 3.1: This figure from Mozer and Kletzing [1998] shows some very large double layer

observed by the Polar spacecraft. The plot shows three components of the electric field in

magnetic field aligned coordinates where the z component is along the magnetic field line, the

x component is in the plane of the magnetic field line and pointing toward the earth, and the y

component completes the orthogonal coordinate system.
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Figure 3.2: This figure from Mozer et al. [1997] shows some very large SWs observed by the

Polar spacecraft. The plot shows three components of the electric field in the same magnetic

field aligned coordinate system which is the as in Figure 3.1.

A strong double layer model would have one region where most of the acceleration is taking

place, shooting the electrons down the field lines to cause the aurora (Figure 3.3). FAST has

also made observations of strong double layers [Ergun et al., 1998c; McFadden et al., 1999a],

including recent observations that suggest a oblique double layers (electrostatic shocks) at the

boundary of auroral acceleration region and the ionosphere might cause between 5% and 50%

of auroral acceleration [Ergun et al., 2001]. Once again, it is unclear if enough strong double

layers have been seen to account for the acceleration of all auroral particles, but it seems likely

that they play a significant role.

Recent observations of solitary waves suggest that there are two classes of solitary waves:

those associated with electron beams and those associated with ion beams [Ergun et al., 1998b;
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Figure 3.3: This diagram shows a double layer accelerating electrons down a magnetic field

line to cause the aurora [From Borovsky, 1993].

Bounds et al., 1999]. Figure 3.4 compares the differences between electron and ion solitary

waves. Solitary waves associated with electron beams tend to have higher speeds (1000’s

of km s−1) than those associated with ion beams (100’s of km s−1). Solitary waves that

are associated with ion beams were first observed in the auroral acceleration region by S3-3

[Temerin et al., 1982], later by Viking [Boström et al., 1988], and most recently by Fast Au-

roral Snapshot (FAST) [McFadden et al., 2002] and Polar [Mozer et al., 1997; Bounds et al.,

1999; Dombeck et al., 2001]. Solitary waves associated with electrons beams (or presumed to

be associated with electron beams due to the structures’ speeds) were first observed by Geo-

tail in the plasma sheet boundary layer and magnetotail [Matsumoto et al., 1994; Kojima et al.,

1997; Matsumoto et al., 1999]; later by FAST in the auroral acceleration region [Ergun et al.,

1998b, a] and cusp [Yi-Jiun et al., 2001]; by Polar in the auroral acceleration region [Mozer et al.,

1997; Bounds et al., 1999; Dombeck et al., 2001], the cusp [Cattell et al., 1999], the magne-

topause [Cattell et al., 2002], plasma sheet boundary layer [Mozer et al., 1997; Cattell et al.,
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1999; Franz et al., 1998, 2000]; and by Wind in the bow shock [Bale et al., 1998] and solar

wind [Mangeney et al., 1999].

S3-3’s original observations of solitary waves in the auroral zone showed solitary waves with

a lower limit of several volts of net potential drop across the structure and a lower limit of 50

km s−1 on the speeds of the structures. The structures had sizes both parallel and perpendicular

to the background magnetic field of ∼ 40 λD, assuming that there was a cold background

plasma population (which later results called into question) [Temerin et al., 1982]. Viking’s

observations gave net potential drops up to 2-3 V and speeds of 5 - 50 km s−1. Scale sizes

were of the order of 50-100 m, with the perpendicular scale sizes being slightly greater than the

parallel sizes. These scale sizes translated to ∼ 10 λD, including a cold electron population of

5 eV and 5 cm−3 [Koskinen et al., 1990; Mälkki et al., 1993] that was indicated by the Viking

observations. The Viking observations have recently been caused into question due to the

possibility that the technique used to find solitary wave velocities using Viking data is flawed

[McFadden et al., 2002].

A recent Polar spacecraft statistical study of ion-related solitary waves in the auroral accel-

eration region [Dombeck et al., 2001] gives much different characteristics for these structures.

The potential amplitude of the structures, eφ/kTe (where e is the fundamental charge, φ is the

potential amplitude, k is Boltzmann’s constant, and Te is the electron temperature), is ∼ 0.1,

where kTe is up to 1 keV (i.e., potentials of 10-100 V). The solitary wave speeds are between

the hydrogen and oxygen beam speeds, in the same 75-300 km s−1 range as that found in a

previous Polar study [Bounds et al., 1999]. The scale size in the parallel direction is ∼ 10-20

λD, with the Debye length being ∼ 200 m in this case [Dombeck et al., 2001]. Recent FAST

observations have indicated that cold plasma densities are very low in the upward ion beam

region [Strangeway et al., 1998; McFadden et al., 1999c]. The presence or absence of cold

plasma populations in the regions where solitary waves are observed is important because it

impacts which theories can be used to explain the observations of solitary waves.
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Figure 3.4: The figure above shows some characteristics of ion and electron solitary waves. No-

tice that the ion and electron solitary waves propagate in opposite directions in this diagram, as

ion and electron beams in the auroral acceleration region typically travel in opposite directions.
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3.2 Theories and Simulations of Solitary Structures

Solitary structures can be developed in a number of different ways in a plasma, but two com-

monly cited modes are ion or electron acoustic solitary waves and phase space holes. More

background on these topics can be found in many sources including Treumann and Baumjohann

[1997] and Stix [1992].

3.2.1 Ion Acoustic Solitary Waves

Solitary waves can be found from one dimensional analysis of ion acoustic waves, assuming

that Te >> Ti [following Sagdeev and Galeev, 1969]. Since the electrons are hot they will have

a Boltzmann distribution, while the cold ions will follow a simple continuity relation. These

assumptions lead to the momentum equation:

mi

(

∂v

∂t
+ v

∂v

∂x

)

= −e
∂Φ

∂t
, (3.1)

the continuity equation:

∂ni

∂t
+

∂(vni)

∂x
= 0, (3.2)

and Poisson’s equation:

∂2Φ

∂x2
= −4πe

(

noe
eΦ
kTe − ni

)

. (3.3)

Then by assuming that the solution will be a traveling wave, so the dependence of all of the

variables on x and t takes the form x - ut (where u is the solitary wave speed), these three

equations can be combined into equation:

∂2Φ

∂x2
= 4πnoe

(

u
√

u2 − 2eΦ
mi

− e
eΦ
kTe

)

. (3.4)

Integrating this equation and determining the integration constant by requiring that the deriva-

tive of the potential goes to 0 when the potential goes to 0 gives:
(

∂Φ

∂x

)2

= 8πno

(

umi

√

u2 −
2eΦ

mi
+ kTee

eΦ
kTe − miu

2 − kTe

)

. (3.5)

36



This equation can be written in the form of a potential equation:

1

2
(
∂Φ

∂x
)2 + U(Φ) = 0, (3.6)

where the potential term, U(Φ), is known as the Sagdeev Potential [Sagdeev, 1966]. One

particularly interesting solution of this equation is the ion acoustic soliton solution:

Φ =
3z

cs

sech2

(√

z

2cs

(x − ut

λDe

)

)

, (3.7)

where cs is the ion acoustic speed, λDe is the Debye length, u is the wave speed, x is the

coordinate in the direction of propagation, t is the time, and z = u
cs

− 1. Note that in this

solution the amplitude of the soliton
(

3x
cs

)

is inversely proportional to the square of the width of

the soliton
(
√

2cs

z

)

. This solution is plotted in Figure 3.5. Notice that in this case the potential

returns to its original value, so that there is no net potential across the solitary wave. This case

is not a double layer, but instead is a triple layer. There is a layer of electrons on each side, with

the ions in the middle.

One major type of theory attempting to explain weak double layers involves the ion acoustic

solitary waves. In these models, there are complications that allow the ion acoustic solitons to

evolve into weak double layers. One such model involves an electron beam being reflected at

a soliton [Lotko, 1983] (Figure 3.6). The reflected beam causes the potential to rise on the side

it reflects off of, and subsequently the structure has a net potential change associated with it.

So this model also relies on the currents that are seen in the auroral region, and the associated

beams, as a source of free energy. The problems with these models include growth time scales

that are much larger than the observed values [Mälkki et al., 1989], as well as predicting that

the potential amplitude is inversely proportional to width while the observations show that they

are directly proportional [Dombeck et al., 2001].

Ion acoustic solitons have been studied in the context of the auroral acceleration region in

particle-in-cell (PIC) simulations since at least Sato and Okuda [1980], whose work was in 1-

D. This work was extended to 2-D by Barnes et al. [1985] who found that weak double layers

did not form unless the plasma was strongly magnetized (ωce > ωpe). Marchenko and Hudson
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Figure 3.5: This diagram shows the relationship between the electric potential and the charge

density for a soliton.
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Figure 3.6: This figure shows a proposed mechanism for converting a soliton, which has no

net potential drop, into a weak double layer, which has a net potential drop. The mechanism

involves reflecting an electron beam off of one side of the soliton’s potential structure, which

would cause a charge buildup. This charge buildup leads to a net potential across the soliton

[from Eriksson and Boström, 1993].
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Figure 3.7: This diagram shows the relationship between the electric potential and the charge

density for a double layer.

[1995] extended this work to explain the Viking spacecraft observations [Boström and Anson,

1988; Eriksson et al., 1997] that solitary waves formed in regions dominated by cold plasma.

Chapter 6 will extend this work to deal with plasma parameters consistent with FAST spacecraft

observations, which sees little to no cold plasma in the auroral acceleration region [McFadden et al.,

1999c].
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3.2.2 Strong Double Layers

Strong double layers (Figure 3.7) are separated regions of charge where the potential drop

across the structure is greater than the electron temperature. The biggest strike against the-

ories explaining the auroral potential drop through the use of strong double layers had been

that strong enough electric fields are not often observed in the magnetosphere. According to

[Borovsky, 1993], parallel electric fields of 500 mV/m would be required for strong double

layers to be the source of the auroral acceleration. Electric fields of that order have been ob-

served by Polar (See Figure 3.1). It is not clear if there are enough of them to support the

auroral potential drop, though single large structures can support a significant fraction of the

auroral potential drop [Mozer et al., 1997]. FAST has also recently observed strong double lay-

ers [Ergun et al., 2001, 2002], making it more likely that strong double layers support at least

a portion of the auroral potential drop. Recent computational and theoretical work concerning

these strong double layers, also suggest that they may be the source of electron phase space

holes [Newman et al., 2002].

3.2.3 Phase Space Holes

The other main type of theory explaining weak double layers involves Bernstein-Greene-Kruskal

(BGK) phase space holes [Bernstein et al., 1957]. BGK phase space hole models have been ad-

vanced to explain both ion beam related solitary waves [Dupree, 1982; Tetreault, 1988, 1991]

and electron beam related solitary waves [Muschietti et al., 1999a, b]. An explanation of ion

phase space holes will be given here, though the explanation of electron phase space holes

is quite similar. These models involve “holes” in the the ion distribution function when the

electron population is drifting with respect to the ion population (Figure 3.8). These holes are

originally caused by thermal fluctuations, but the holes grow and move towards the center of

the distribution [Tetreault, 1991]. Physically this result can be explained by thinking of the

holes as negative particles being repelled by the electrons. The size of the hole grows because

the hole enters a phase region that is more densely populated. The electrostatic potential can be
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Figure 3.8: This diagram shows the development of an ion phase space hole. The phase space

hole develops near the edge of the ion distribution function and then moves toward the center

of the distribution and grows.
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determined from this model using Poisson’s equation, and the predicted potential drops can be

quite large depending on the initial conditions for the hole. The drifting in these models is due

to the field aligned currents, so once again the source of free energy is these currents. One of the

advantages of BGK phase space holes is that they can form with any drift drift velocity. One of

the most serious shortcomings of these hole models stems from the fact the theories have only

been done in one dimension, and it is believed that perpendicular effects should be important.

Also, these models don’t usually account for the linear wave modes which are usually present

near the weak double layers [Koskinen et al., 1993], though Tetreault [1991] does mention the

possibility of ion phase space holes being a source of electrostatic ion cyclotron waves.

Simulations involving electron phase space holes in the context of laboratory plasmas started

with Morse and Nielson [1969]. Several groups have done simulations involving electron phase

space holes in the magnetosphere, though no simulations focusing on magnetospheric ion phase

space holes have been done. Geotail observations of electron solitary waves, which were orig-

inally referred to as broadband electrostatic noise (BEN), have lead to several attempts at sim-

ulations to explain the results [Omura et al., 1994; Matsumoto et al., 1994; Krasovsky et al.,

1997; Omura et al., 1999]. Muschietti et al. [1999a] has looked at electron phase space holes

by loading a particle simulation with a BGK stable solution for an electron phase space hole,

and then following the evolution of these structures. Singh [2000] used a 1-D Vlasov code to

simulate the electron solitary waves seen by FAST and found that an electron beam accelerated

by a double layer would create electron holes, as well. Oppenheim et al. [2001] have done 2-D

and 3-D PIC simulations of electron holes and found that the electron holes decay into whistler

and lower hybrid waves.
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3.3 Summary

Magnetospheric solitary waves, which are nonlinear structures most often observed in electric

field measurements, have been observed throughout the magnetosphere by a variety of space-

craft. Several different types of solitary waves have been observed, including strong and weak

double layers. Solitons are solitary waves that have symmetric potential profiles and in which

the potential amplitude is inversely proportional to the width. Double layers are structures that

are named due to their two regions of separated charge which cause these structures to sustain

a net potential drop. Strong double layers have a net potential drop larger than the electron

temperature, while weak double layers do not. The observations of solitary waves have been

further divided based on the type of particle beams they are generally seen with. Electron soli-

tary waves are generally observed along with electron beams throughout the magnetosphere and

have propagation speeds on the order of thousands of kilometers per second. Ion solitary waves

are observed along with ion beams only in the auroral acceleration region and have speeds of

hundreds of kilometers per second. One theory used to explain the origin of ion solitary waves

is that they evolve from ion acoustic solitons into weak double layers due to the influence of

electron beams. BGK phase space holes are another theory which is used to explain both ion

and electron solitary waves. Simulations studying both ion and electron solitary waves have

been performed.

Weak double layers have been observed frequently, but there is no model which explains

them satisfactorily. It is also uncertain how they fit into auroral acceleration. At the present

time, it is unclear whether they cause auroral acceleration or they are just a side effect of other

processes which drive the auroral acceleration [Eriksson and Boström, 1993]. Much of the

remainder of the work presented here will discuss our simulations and observations of solitary

waves and how they fit into the physics of the auroral acceleration region.
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Chapter 4

Solitary Wave Simulation Methods

This chapter begins with a brief discussion of computational techniques used to study plasmas

in space physics. Then particle-in-cell (PIC) simulation techniques and ES2, the code used

here, are described in more detail. This discussion includes description of the normalizations

and initial conditions used to apply ES2 to the problem of ion solitary waves in the auroral

zone.

4.1 Plasma Simulations

Several different schemes for numerically studying plasma behavior are commonly used includ-

ing magnetohydrodynamic (MHD), PIC, and Vlasov codes. Each of these methods is suitable

for studying plasma behavior in specific plasma regimes.

MHD codes work by modeling the plasma as a fluid. In fact, the equations that are the basis

for MHD simulations are the same as those used to study fluids, with the addition of terms and

equations that deal with the response of plasma particles to electromagnetic fields. Typically,

MHD simulations treat the plasma as a single fluid with the plasma characteristics averaged

over all particle species. Due to the averaging over plasma species that goes into MHD models,

they are well suited for studying large-scale plasma processes and processes involving bulk

45



motion of plasma, but not as suitable for resolving small-scale processes where the details

of particle behavior are important. Also, some type of distribution for the particles must be

assumed in MHD codes so that the particle distributions can be averaged over. Equilibrium

or near equilibrium distributions are usually assumed and therefore MHD codes are harder to

apply to situations where non-equilibrium particle distributions are expected [MacNeice, 1995].

PIC codes involve modeling the plasma through use of pseudo-particles. Due to computa-

tional constraints, the pseudo-particles in a PIC simulation rarely have a one-to-one correspon-

dence to real particles in the plasma. Instead, one pseudo-particle will represent the behavior

of many real particles. In a PIC simulation, the positions and velocities of the particles are

tracked, but for the purposes of considering the forces on the particles, the simulation is di-

vided into a grid. Forces on particles are calculated by averaging the relevant plasma properties

(such as charge density) over each grid cell, and calculating the forces caused by each cell on

each particle. Since the particle nature of the plasma is preserved, PIC are well-suited for ex-

amining non-equilibrium processes. One drawback of PIC simulations is that the need to have

pseudo-particles represent more than one real particle causes PIC simulations to be noisier than

the real processes they simulate [Birdsall and Langdon, 1991].

Vlasov codes involve solving Vlasov’s equation (Equation 2.12) directly for the plasma to

be studied. Solving Vlasov’s equation is a difficult numerical problem since it involves directly

integrating the particle distributions, which often forces Vlasov’s codes to be one dimensional,

where MHD and PIC codes are most often two or three dimensional. The major advantage

of Vlasov codes over PIC codes is that since the distribution function is solved completely,

Vlasov codes tend to have much less noise than PIC codes [MacNeice, 1995]. So, Vlasov codes

are often the preferred choice when the numerical expense of Vlasov codes can be justified,

although that is not the most common case.
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4.2 ES2 and Solitary Waves

The simulations presented here were performed using ES2 (which is based on ES1 - a 1-

dimensional code described in Birdsall and Langdon [1991]), a 2.5-dimensional, electrostatic

PIC code with periodic boundary conditions. The reasons why these characteristics of ES2

make it an appropriate simulation code to use to study ion solitary waves in the auroral accel-

eration region are described in this section.

First, it is a PIC code, and the non-quasi-neutral nature of the charge separation in solitary

waves makes solitary waves a phenomenon that could not be studied with an MHD code, but

can be studied with a particle code. PIC are preferred over Vlasov codes for examining solitary

waves because of the difficulty of multi-dimensional Vlasov codes and the fact that extra noise

of PIC codes might actually be beneficial in providing a source for solitary waves.

Using a 2.5-dimensional (2.5D means that the code is 2D in physical space and 3D in veloc-

ity space) simulation, such as ES2, to study solitary waves is an appropriate trade off between

computational difficulty and adherence to physical reality. A 1D code would not be very useful

for studying solitary waves since the properties and behavior of these structures is expected

to be quite different in the direction parallel to the background magnetic field from the direc-

tions perpendicular to the magnetic field. Conversely, the two directions perpendicular to the

background magnetic field are expected to be interchangeable, so the increase of computational

expense of a fully 3-dimensional simulation is not necessarily warranted. The Lorentz force

in a 2.5D simulation includes terms dependent on the velocity in the third dimension. So third

dimension is added in velocity space since it adds comparatively little computational expense,

but increases the accuracy of the simulation.

Solitary waves are often observed with no magnetic field fluctuations corresponding to the

electric field fluctuations. Magnetic field fluctuations have been observed with some electron

solitary waves, but the fluctuations were small and consistent with being caused by the motion

of the charge of the solitary structure [Ergun et al., 1998b]. So the computational price incurred

by using an electromagnetic simulation would not be justified due to the essentially electrostatic
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nature of the solitary waves. Therefore, the use of an electrostatic simulation, like ES2, to study

solitary waves is appropriate.

Using periodic boundary conditions to study solitary waves is sensible for several reasons.

First, it is expected that the direction perpendicular to the background magnetic field will be

fairly uniform. Since little motion of particles is expected in the perpendicular direction, al-

lowing the particles to wrap around the simulation to the opposite side after crossing one of the

perpendicular boundaries is not likely to cause any problems. Periodic boundary conditions in

the direction parallel to the magnetic field are more difficult to defend, but still preferable to the

alternatives. The solitary wave structures move at high speeds parallel to the magnetic field,

so, with periodic boundary conditions, not only do individual particles wrap around from one

end of the simulation grid to the other, but so do entire solitary waves. This wrap around of

solitary waves is partially justified by the fact that multiple solitary waves are observed along

the length of a magnetic field line. So a single solitary wave in a system with periodic bound-

ary conditions can play the role of multiple solitary waves spread along a magnetic field line.

As an alternative, the boundary conditions in the parallel direction could be open. This would

require re-injecting “fresh” particles whenever simulation particles crossed one of the parallel

boundaries. In order to study solitary waves with a simulation with open boundary conditions a

simulation box that is very long compared to its width would be required. It is much more rea-

sonable numerically to use periodic boundary conditions in the parallel direction and to keep in

mind that the effective length of our simulation grid is increased by the wrap around of particles

from one end of the simulation to the other.

4.3 Computational Details

Electrostatic PIC codes, such as ES2, work by solving Poisson’s equation:

∇2Φ = −4πρ(~x) (4.1)
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where Φ is the electric potential and ρ(x) is the charge density. To start the simulation run,

the particles are loaded into random locations. Then the charge density caused by the initial

positions of the particles is calculated by adding the charge density contribution of each particle

to the appropriate grid cells. From the charge density and Equation 4.1, the electric field is

determined:

E(x) = −∇Φ . (4.2)

From the electric field, the force on particle i is:

Fi = qiE(xi) = miai . (4.3)

Then the particles are allowed to move under the influence of the electric field, and any other

forces (such as the background magnetic field), for a time step ∆t. Next, new positions are

calculated for the particles, and from the new positions, a new charge density is calculated.

This process is then iterated for the remainder of the time steps left in the simulation run.

Several factors complicate the simple overview of ES2’s computational scheme presented

above. One of these complications is the computation of the charge density [Birdsall and Langdon,

1991]. The charge density must be calculated for all of the discrete points on the grid from the

continuous measurements of particle position. The simplest method of weighting, known as

zeroth-order weighting, is to assign the entire value of a particle’s charge to the grid point that

it is closest to. This scheme is fast computationally, but it leads to problems with noise since

a small change in a particle’s position can change which grid point its charge is included with

for calculating the charge density.

To reduce the noise due to weighting, some simulations such as ES2 use first-order weight-

ing [Lawson and Gray, 1989]. In first-order weighting, the charge of a particle is effectively

spread over an entire grid box. If the particle’s position happens to lie exactly on a grid point

when the charge density is calculated, then all of its charge is added to that grid point. Oth-

erwise, the charge is spread over two or more grid points. The particles in this weighting are

effectively clouds of charge instead of discrete points of charge. First-order weighting is more
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expensive computationally, but it leads to less noisy simulations, which aids in interpretation

of the results.

Analogous considerations go into the weighting of electric fields for the determination of

forces on particles. In zeroth-order weighting for forces, the electric field at the grid point

nearest the particle is used to determine the force on the particle. As with charge density,

zeroth-order forces lead to noise. So first-order force weighting, where the electric field for a

particle is determined by interpolating the electric fields from the nearby grid points, is used in

ES2.

The method of solving Equation 4.1 is also more complicated. Instead of solving the finite

difference version of that equation, the equation is Fourier transformed [Lawson and Gray,

1989]. This simplifies the solution, since in k-space the Poisson’s equation (Equation 4.1 in 2D

becomes:

φ(~k) = −
ρ(~k)

k2
, (4.4)

which is easier to solve. Equations 4.2 and 4.3 are also solved in k-space. The results are then

transformed back into normal space for analysis.

4.4 Normalizations

Since computers deal in unitless numbers, it is the responsibility of the programmer to keep

track of the units. Some simulation programs are designed to use certain sets of units and

require input and output in those units. Other programs, such as ES2, use normalized values for

input and output. Normalized units simplify the equations that go into the simulation and make

more obvious the variety of scales for which the simulation results are valid. Normalization

schemes other than the one described below can be used with ES2 without changing the code

itself, but this scheme has a lot of useful qualities. This scheme is the same as the one used by

Marchenko and Hudson [1995] and others.

The most basic normalizations in ES2 are of time and space. In this study, the distance scale
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was set to the electron Debye length and the time-scale was set to the inverse of the electron

plasma frequency which leads to very convenient results. If there is more than one electron

species, the convention of having normalizations based on the first electron species in the input

file is used. With this type of normalization, velocities were normalized by the electron thermal

velocity:

λDeωpe =

√

Te

me

= vtex, (4.5)

where λDe, ωpe, Te,me, and vtex are the electron Debye length, plasma species, temperature,

mass, and thermal speed respectively.

Some of the other normalizations come from the definitions of the plasma and cyclotron

frequency in the 2-D case. The plasma frequency,

ωp
2 =

n0 ∗ q2

(m ∗ lx ∗ ly)
=

n0 ∗ qm ∗ q

(lx ∗ ly)
, (4.6)

is used in ES2 to find out what the charge is, since only qm (charge divided by mass) is used

as input. Also, this equation is used to determine the plasma frequencies for species other than

the first electron species:

ωpj =

√

n0j

n0e

qmj

qme

. (4.7)

In this equation j is the species in question, and e is the first electron species.

The cyclotron frequency,

Ωc =
ZeB0

mc
= qm ∗ b, (4.8)

where e is the fundamental charge, Z is the number of charges, B0 is the background magnetic

field, and b the normalized magnetic field, leads to the normalization for b. Since qm is set

to -1 for electrons, if sign is ignored, Ωe = b. So b has units of inverse time, and it can be

normalized with respect to the plasma frequency. Another way to consider the normalization

for b is to regard it in terms of the ratio of electron cyclotron frequency to electron plasma

frequency [Lawson and Gray, 1989]. This is an informative way of thinking about the problem
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since the electron cyclotron frequency is a measurable quantity and it gives some insight into

how magnetized the electrons in a given system are.

Electric field is normalized based on Te/e ∗ L, or electron temperature divided by electron

charge divided by length of the box. So basically, the potential drop across the box is chosen

and then divided by the size of the box.

For setting the other velocities in the simulation, the fact that all of the velocities scale as

vtex of the first electron species is used. Then :

vtjk =

√

qmjTjk

Tex
(4.9)

where j is a given species, and k is a coordinate. This works for thermal speeds and drift

(beam) speeds. Also, charge (q) can be used as a check to make sure ωp was set correctly. All

singly ionized species should have the same absolute value for charge.

4.5 Initial Conditions

The initial particle populations are crucial initial conditions for these simulations of solitary

waves. The details of the particle populations used are described in Chapter 6, but the general

idea is to model the particles observed in as few particle populations as possible. For these

purposes, the electrons were modeled with one background population, while the ions were

modeled with one or more equal energy beam populations to follow the observations of the

auroral acceleration region [McFadden et al., 1999c]. For the ion beams, all the simulations

have at least a hydrogen beam population, while some of the runs add an oxygen or oxygen

and helium beam populations. Variations in the number of particle populations were included

to simulate the variety of particle populations observed, which ranged from particle distribu-

tions almost completely dominated by hydrogen, to particle distributions with large fractions

of oxygen and helium.

The other physically interesting initial condition is the electric field that is applied across

the simulation box along the magnetic field direction. This electric field is included in the
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simulation to simulate the quasi-static electric field that is observed in the auroral acceleration

region. This electric field also is a source of free energy for the particles in the simulation.

4.6 Summary

PIC simulation codes, along with magnetohydrodynamic and Vlasov codes, are often used to

simulate plasma processes. PIC codes, due to their particle nature, are well suited for studying

non-equilibrium processes like solitary waves. ES2, the simulation program used in this study,

is a 2.5-dimensional, electrostatic PIC code. In ES2, the spatial and time simulation parameters

are normalized in terms of the Debye length and the inverse of the electron plasma frequency,

which leads to convenient normalizations for most other simulation parameters. The simula-

tions presented here include one electron population and one or more ion population, as well

as an applied electric field along the magnetic field, in order to simulate the observed plasma

conditions in the upward field aligned current portion of the auroral acceleration region.
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Chapter 5

Solitary Wave Observation Methods

The Polar spacecraft was used to make observations of solitary waves for this study. This

chapter introduces the Polar spacecraft and its instruments. First, the history and purpose of the

Polar spacecraft are introduced. Next Polar’s orbit and its precession are discussed. Then the

Electric Field Instrument (EFI), which is the main instrument used in this study for studying

solitary waves, is discussed, along with how this instrument is used to study solitary waves.

Finally, the selection criteria used for determining solitary waves is explained.

5.1 The Polar Spacecraft

The Polar spacecraft was launched February 24, 1996. It has a variety of instruments including

field instruments, imagers, and particle detectors (see Table 5.1 [Russell, 1995]). The main

source of data for this study is from the EFI, though some magnetic field (MFE) and particle

data (TIMAS and Hydra) are used as well.

The majority of Polar’s instruments are mounted on or near the central body of the space-

craft. An exception is the EFI which consists of 3 sets of perpendicular booms that have electric

field detectors at their ends. 2 of the sets of booms are flexible wire booms which require spin

for stability, so Polar rotates with a period of 6 seconds. Polar’s spin plane is set so that it is
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Field Instruments

Electric Fields Instrument EFI

Magnetic Fields Experiment MFE

Plasma Waves Instrument PWI

Imagers

Ultraviolet Imager UVI

Visible Imaging System VIS

Polar Ionospheric X-Ray Imaging Experiment PIXIE

Particle Detectors

Toroidal Imaging Mass-Angle Spectrograph TIMAS

Thermal Ion Dynamics Experiment TIDE

Plasma Source Investigation PSI

Charge and Mass Magnetospheric Ion Composition Experiment CAMMICE

Comprehensive Energetic-Particle Pitch-Angle Distribution CEPPAD

Source/Loss Cone Energetic Particle Spectrometer SEPS

Hot Plasma Analyzer Hydra

Table 5.1: Polar Spacecraft’s Instruments
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the same as the plane of Polar’s orbit, which means that Polar “cartwheels” through its orbit

[Harten and Clark, 1995].

5.1.1 Polar’s Orbit

Polar has a polar orbit with a period of 18 hours, an inclination angle of 85 degrees, an apogee

of 9 RE , and a perigee of 1.8 RE geocentric (see Figure 5.1). Due to the precession of its orbit,

Polar has made observations in a wide variety of regions of the magnetosphere. Polar’s orbit

has precession in two different directions due to different effects.

One of the precessions of Polar’s orbit is actually due to the motion of the Earth around the

Sun. The plane of Polar’s orbit stays relatively constant in inertial coordinate systems fixed to

the Earth, but rotates in common magnetospheric coordinate systems (GSE, GSM, SM) that are

set by the line between the Sun and the Earth. Since the line from the Sun to the Earth revolves

with a period of one year, the position of the orbit will precess with that same period. Due to

this precession, the orbit will sweep through all local times twice per year. The coverage of

local times is doubled because each orbit covers two local times - i.e. an orbit that covers the

noon local time at one end of the orbit would cover midnight at the other end of the orbit.

The other type of precession of Polar’s orbit causes the perigee of the orbit to slowly precess

toward the equatorial plane. The orbit precesses roughly 16 degrees a year. In the beginning

of the Polar mission, the perigee and apogee were almost directly over the poles. Currently

perigee is just above the equatorial plane and it will cross the equatorial plane August 27, 2002.

The precession of Polar’s orbit is beneficial for using the spacecraft to study the magneto-

sphere, since the regions that the spacecraft observes varies throughout the lifetime of the space-

craft. In the case of our observations of solitary waves, Polar’s orbit has allowed observations

solitary waves in the southern auroral acceleration region [Bounds et al., 1999; Dombeck et al.,

2001], the plasma sheet boundary layer [Cattell et al., 1998; Franz et al., 1998], the cusp [Cattell et al.,

1999], the magnetopause [Cattell et al., 2002], and the bow shock (see Figure 1.2).

56



Figure 5.1: This figure shows Polar’s orbit on March 1-2, 1996 (top panels), near the beginning

of its mission and on July 17-18, 2002 (bottom panels). The left panels show the projection of

Polar’s orbit into the XZ plane in Solar Magnetic (SM) coordinates and the right panels show

the projections into the YZ plane. Solar Magnetic coordinates have the z direction defined

by the direction of Earth’s magnetic field and the y direction perpendicular to the Earth-Sun

line and pointing in the direction of dusk.The colors of the lines in the plots correspond to the

region of space Polar is in or the region of the ionosphere the magnetic field line Polar is on

maps to. Grey corresponds to the polar cap, red to the auroral oval, blue to cleft, black to the

cusp, green to the plasmasphere, and yellow to elsewhere in the magnetosphere. Plots courtesy

of Peredo and Boardsen [1996]. 57



5.1.2 Polar’s Electric Field Instrument

The Electric Field Instrument (EFI) is a fully 3-dimensional electric field detector. It consists

of 3 sets of mutually orthogonal booms the ends of which are 20 cm spherical Langmuir probes

(see Figure 5.2). The 4 electric field booms in the spin plane are long wires (100 m and 130m

long tip-to-tip), while the 2 booms parallel to the spin of the spacecraft are short, rigid stacers

(13.8 m tip-to-tip) [Harvey et al., 1995]. The potential difference between the spacecraft and

each probe is measured. Pairs of measurements from opposing booms are combined to deter-

mine the electric field. EFI can sample the electric field from DC to over 20 kHz. Electric fields

between ∼ 0.02 and 1000 mV/m can be detected. EFI measurements of spacecraft potential

can also be used to infer number densities from ∼ 0.01 to 100 cm−3. EFI includes a 2 MB burst

memory which allows the instrument to take short bursts of higher time resolution data. The

data can then be slowly sent to the ground over the course of Polar’s orbit. Several different

time resolutions are available for this burst data, although most bursts have been taken at 1.6 or

8 kHz and the majority of the data presented herein is 8 kHz burst data [Harvey et al., 1995].

Burst mode allows Polar to make observations of interesting electric field structures that would

not otherwise be possible due to telemetry constraints. The availability of high-time resolution

electric field is critical for the study of solitary waves since they are such fast moving structures

that some of the structures are under-sampled even at this time resolution. Figure 5.4 shows an

example of 8kHz burst data containing solitary waves from February 4, 1997. The data in this

figure was taken at low altitude in the auroral acceleration region.

5.1.3 Polar’s Particle Detectors

Data from two of Polar’s particle detectors is used in this study: Hydra [Scudder and et al.,

1995] and TIMAS (Toroidal Imaging Mass-Angle Spectrograph) [Shelley and et al., 1995].

The Hydra instrument measures both ion and electron populations. Hydra consists of six pairs

of electrostatic analyzers (ESAs). The ESAs have a curved channel with charged plates on each

side and a particle detector at the end of the channel. The charge on the plates is varied, which
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Figure 5.2: This figure from Harvey et al. [1995] shows the layout of EFI. The top diagram

shows the spin plane and the bottom diagram show the spin axis.
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changes which particles can navigate the channel and strike the detector. The six pairs of ESAs

allow Hydra to measure the particle distribution. Each ESA has an 8 degree by 8 degree field

of view and detects an energy range from 12 eV to 18 keV. Each energy sweep takes 1.15 s and

the instrument alternates between ion and electron sweeps.

TIMAS is a spectrograph which simultaneously measures the angle and mass distributions

of charges from 1 to over 32 atomic mass units per fundamental charge (amu/e). The field of

view of the instrument is 315 degrees by 10 degrees, with measurements being sampled over

20 ms. The spin of Polar allows the spacecraft to sample almost the entire four pi solid angle

within a half spin periodic (3 s). The 3-D ion distributions that TIMAS measures have energy

ranges from 15 eV/e up to 32 KeV/e.

5.2 Solitary Wave Detection

For the study of solitary waves, EFI is used as an interferometer (see Figure 5.3). To determine

the solitary wave speed, the time difference between when the solitary wave is observed by the

two probes is calculated. For the purposes of this calculation, the average potential of the two

perpendicular booms is used as the reference potential instead of the potential of the spacecraft.

This alternate potential is used because the spacecraft would react differently to the potential

of the solitary wave than the spherical probes [Dombeck et al., 2001]. Potential measurements

for a current biased electric field instrument such as EFI are complicated by interactions with

the plasma:

φi = Ei · di + (Vi − Vs) (5.1)

where the subscript i stands for any of EFI’s six spherical probes, φi is the voltage measurement

for the probe, Ei · di is the plasma potential difference between the spacecraft and the probe,

and Vs is the floating potentials of the spacecraft, Vi is the bias voltage of the probe [Johnson,

2002; Mozer, 1973]. The floating potential of a conductor in a plasma is the potential that the

conductor floats at relative to the plasma due to the collection of particles by the conductor.
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The spacecraft floating potential changes depending on the plasma density, so it would change

during the passage of a solitary wave due to the density fluctuations within a solitary wave. The

variation of the spacecraft potential leads to the need for the more stable reference potential,

φc, described below. The probe bias potentials are roughly constant during the passage of the

solitary wave and are roughly the same for all of the probes.

The average of the voltage measurements of the perpendicular booms is a as suitable proxy

for spacecraft voltage because the perpendicular electric fields that they measure are expected

to cancel since the perpendicular scale size of the solitary waves is expected to be larger than

the probe separation distance:

φc =
1

2
(φ1 + φ2)

=
1

2
(E1 · d1 + E2 · d2 + V1 + V2 − 2Vs)

=
1

2
(V1 + V2) − Vs,

(5.2)

where φc is the central potential. The central potential is then used to find the signals that will

be used to analyze the solitary waves:

φ+ = φ3 − φc

= E3 · d3 + (V3 − Vs) −
1

2
(V1 + V2) + Vs

= E3 · d3 + (V3) −
1

2
(V1 + V2)

= E3 · d3

(5.3)

φ− = φc − φ4

=
1

2
(V1 + V2) − Vs + E4 · d4 − (V4 − Vs)

=
1

2
(V1 + V2) − V4 − E4 · d4

= −E4 · d4

(5.4)

where φ+ is the signal seen by the near boom, and φ− is the signal seen by the far boom. In

both the equations above the probe bias potentials cancel because all of the probe bias potentials
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Figure 5.3: This figure shows how EFI is used as an interferometer to detect solitary waves. A

solitary wave is shown traveling down the magnetic field line where it is first observed by probe

2, and then later by probe 4. The time difference between when these observations are made is

used to determine the speed of the solitary wave. [Adapted from Dombeck et al., 2001].
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are roughly equal. The time delay is found by cross correlating the φ+ and φ− signals and find

what time shift to the φ− most closely matches it to the φ+. An example of the output of the

program used to detect solitary waves (described below) is shown in Figure 5.5.

5.2.1 Solitary Wave Selection Criteria

The Polar solitary waves are analyzed using an IDL (Interactive Data Language) program called

Delaytime, originally written by John Dombeck [Dombeck et al., 2001]. The goals of this pro-

gram are to detect as many solitary waves as possible, while minimizing false positive detec-

tions of solitary waves. In order to do this, solitary waves of fairly arbitrary shapes are searched

for, since not all solitary waves have symmetric, smooth shapes. Allowing for more general

shape differs from some other studies [Ergun et al., 1998a] where the solitary wave shape was

fit to a Gaussian. Allowing for general solitary wave shapes is a more difficult problem than

looking for Gaussian shapes, consequently a number of selection criteria are used in Delaytime.

The general method used by Delaytime to find solitary waves is as follows. First, all of the

8kHz electric field data for a burst is splined by a factor of 5. The measurements from detectors

1 and 3 are taken 25 µs earlier than the measurements from detectors 2 and 4. So splining is

done so that cross correlation can be done on data with a common time basis. Data points that

were 125 µs apart and had a time shift of 25 µs between the long boom pairs is splined to data

that is 25 µs and has the same time basis for all detectors. Next, limits are placed on the angle

between the near probe and the background magnetic field (θ). A minimum angle of 4 degrees

is set to avoid problems with magnetic shadowing, and a maximum angle of 25 degrees is set

to avoid having too small of an effective boom length. These angle tests are applied before

the extrema are found, since the angle does not depend on the extrema and it cuts down on the

amount of data that needs to be analyzed. Next, all of the extrema of the potential data are

found. Then the neighboring extrema are checked to see if they actually denote a solitary wave,

as opposed to some other oscillation. This involves applying several of the selection criteria.

To allow for noisier solitary waves to be selected, 2 intermediate peaks within the solitary wave
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Figure 5.4: This figure shows a sample of EFI burst data from February 4, 1997. The top three

panels show the electric field field-aligned coordinates (coordinates in which the z-direction is

along the magnetic field direction) for the entire burst time period. The bottom three panels

show an enlargement of a period containing several solitary waves. In particular, the solitary

wave at 6:53:47.15 is the solitary wave shown in Figures 5.5 and 5.9. The solitary waves are

most obvious in the z-component of the electric field, though most of these solitary waves have

fairly obvious unipolar perpendicular signals as well.64



Figure 5.5: The plot on the following page shows the analysis of a sample electron solitary

wave.from the burst shown in Figure 5.4. The top panel shows the signals seen near (red line)

and far (green line) boom (V+ and V− correspond to φ+ and φ− in the text) as well as the

parallel electric field multiplied by minus the effective boom length (black line) for comparison

purposes. The black vertical lines represent the limits of the solitary wave as determined by

Delaytime. The small time delay between the two signals is evident in this plot. The lower

panel shows the potential profile of this solitary wave with a slightly different time scale. In-

cluded on this plot are many different characteristics of the solitary and diagnostics of the fitting

procedure.

were allowed. The amplitude of these intermediate peaks was set at 0.3 times the amplitude of

the main solitary wave peak so that the noise of the intermediate peak is not comparable in size

to the selected solitary. Also, the amplitude of the solitary wave seen by the one of the parallel

probes was required to be within 0.7 of the amplitude seen by the other parallel probe. The

minimum electric field amplitude for the solitary wave was also set at 1 mV/m.

Among the most important of the selection criteria is the minimum cross correlation co-

efficient between φ+ and φ−. Setting a minimum cross correlation coefficient is a trade-off

between false positive detection of solitary waves (which will later be removed when solitary

waves are checked by eye) and false negative detection of solitary waves (which will not be re-

covered). In this study the minimum cross correlation coefficient was set at 0.9. Also, a region

of time equal to 0.3 times the time width of the solitary structure was checked to make sure

there was not another peak with amplitude more than 0.3 times the size of the solitary wave.

This criterion helped to eliminate the possibility that linear waves would mistakenly be identi-

fied as solitary waves by ensuring that the region just outside the solitary wave had a relatively

flat electric field signal.
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Figure 5.6: This plot shows the variation of the cross correlation coefficient with time delay

from a typical solitary wave. The peak correlation is chosen as the time delay for this soli-

tary wave and the error range for the time delay is shown by the vertical lines. [Figure from

Dombeck et al., 2001].
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5.2.2 Solitary Wave Parameters

As well as determining the time delay for a solitary wave, an error range on the time delay

is also found from cross correlation analysis. The time delay is picked as the point with the

highest cross correlation, so the time delay has a resolution of 25 µs. The error range on the

time delay is found from the time delay where the cross correlation has fallen so that:

c < 1.2cmax − .2 (5.5)

where c is the cross correlation and cmax is the maximum cross correlation. A example of

the cross correlation versus time delay for a typical solitary wave is shown in Figure 5.6. The

typical error range is 2 to 4 time points on each side of the time delay. The error ranges for time

delays are propagated through for the other solitary wave characteristics mentioned below.

The time delay leads directly to the solitary wave speed:

vsw =
Lboomeff

tdelay

=
Lboom cos θ

tdelay

, (5.6)

where θ is the total angle between the background magnetic field and the booms most closely

aligned to the background magnetic field, Lboom is the total length of the boom, Lboomeff

is the effective boom length parallel to the magnetic field, and tdelay is the time delay. A

positive velocity corresponds to a structure moving anti-parallel the magnetic field direction.

So a positive velocity is away from Earth in the southern hemisphere, and toward the Earth in

northern hemisphere.

Once the velocity of the solitary wave has been calculated, several other properties of the

solitary wave can be determined. The parallel scale size of the solitary wave can be determined

from the solitary wave speed and the time width of the solitary wave:

Lsw = vswtwidth. (5.7)

The parallel potential profile can be determined by integrating the measured electric field:

Φsw = −

∫

Eswdx = −

∫

Eswvswdt. (5.8)
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From the parallel potential profile, the potential amplitude and the potential difference (rise or

drop) of the solitary wave is determined. The results for a sample solitary wave for this and

several other parameters are shown in Figure 5.5.

5.2.3 Perpendicular Characteristics of Solitary Waves

Since solitary waves only pass Polar in the direction parallel to the magnetic field and since

the scale size of solitary waves is much larger than Polar’s booms, the perpendicular potential

profile of solitary waves cannot be measured directly. Some information about the perpendic-

ular scales of the solitary wave can be determined from the perpendicular electric field. The

perpendicular electric field also might give hints as to what portion of the solitary wave Polar

is passing through, since it cannot be assumed that Polar passes through the center of the struc-

ture. If a solitary wave is a symmetric charge structure, it is expected that while the parallel

electric field signature is bipolar, the perpendicular electric field signature should be unipolar

(see Figure 5.7). In an ideal solitary wave, the minimum or maximum of the perpendicular

signal for the solitary wave would occur at the midpoint of the parallel signal of the solitary

wave. In Figure 5.9, the perpendicular signature of the solitary wave shown in Figure 5.5 is

shown. The perpendicular signal of this solitary wave is unipolar, but the minimum of the per-

pendicular electric field does not occur at the same time as the center of the parallel signal of

the solitary wave. This difference may be due to other waves being present at the same time, or

it may relate to non-uniformity in the actual structure of the solitary wave.

5.3 Summary

The Polar spacecraft has a variety of instruments which measure fields and particles and image

particles. Though the electric field instrument is the most important to this study of solitary

waves, magnetic field and particle data are also used here. Polar’s orbit has a perigee of 1.8 and

an apogee of 9 RE geocentric and the precession of its orbit has allowed Polar to observe linear
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Figure 5.7: Shown above is the diagram of perpendicular structure of a model solitary wave.

The green dashed lines show two spacecraft paths through the solitary wave, and the plots

below show the parallel and perpendicular electric fields that would be measured. Notice that

the values of both components of the electric field scale depending on how close to the center

of the solitary wave the spacecraft path crosses.
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Figure 5.8: Magnetic field-aligned coordinates used for analysis of electric field, as in Figure

5.9.

and nonlinear waves in many different regions of the magnetosphere. Polar’s EFI is a fully

3-dimensional detector and it has onboard memory which allows it to save high time-resolution

data for short bursts of time, which is critical for this study. Solitary waves are detected and

analyzed by using EFI as an interferometer. As well as the speeds of the solitary waves, the

spatial size to the magnetic field and potential amplitudes of the structures are also determined.

Several selection criteria, are used to find solitary waves and the automatically detected solitary

waves are later verified by eye.
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Figure 5.9: This plot shows the perpendicular characteristics of the solitary wave in Figure

5.5. The top panel shows the electric field of the solitary wave in field-aligned coordinates.

The next panel has magnitude of the perpendicular magnetic field. The bottom panel show the

angle of the solitary wave in the perpendicular plane (see Figure 5.8). The *’s on the plot mark

extrema of the plots. The box on the plot top panel marks 0 crossing of the z-component of

the electric field and the diamond marks the halfway point between the extrema of the solitary

wave. The box and the diamond represent two different ways of determining the center of the

parallel signal of the solitary wave, and in this case the results from both methods are the same.

Notice that the minimum of the perpendicular electric field is at a time between the minimum

of the parallel electric field and the midpoint of the solitary wave.
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Chapter 6

Simulations of Ion Solitary Waves 1

6.1 Introduction

Previous simulation studies of the ion beam related solitary waves attempting to explain the

S3-3 and Viking observations [Boström et al., 1988] have described ion solitary waves as be-

ing related to ion acoustic solitons [Barnes et al., 1985; Marchenko and Hudson, 1995], or

Bernstein-Greene-Kruskal (BGK) ion phase space holes [Tetreault, 1991], while electron beam

related solitary waves are thought to be electron acoustic waves [Dubouloz et al., 1991], or

BGK phase space holes [Muschietti et al., 1999a, b; Goldman et al., 1999; Singh, 2000]. The

work on ion acoustic solitons is based on the theory that nonlinear, coherent potential pulses

can develop from linear acoustic waves [Lotko, 1983]. Later work extended this theory to in-

clude H+ and O+ beams [Qian et al., 1989]. In the simulations these structures developed from

the interaction of one or more ion or electron beams with background ion and electron popu-

lations. The BGK phase space hole theory is based on the idea that holes in the phase space

distribution of ions can develop owing to thermal fluctuations, and that these holes can prop-

agate and grow [Dupree, 1982]. In simulations these structures driven by drifts between ion

and electron species and thermal fluctuations. Simulations of both mechanisms for developing

1An earlier form of this chapter was published as Crumley et al. [2001].
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solitary waves matched the S3-3 and Viking observations fairly well, but the new observations

of plasma distributions and solitary wave characteristics suggest the need for new simulation

studies.

In this study we examine ion beam related solitary waves seen in the auroral acceleration

region. Our goal is to determine the effect of (1) no cold plasma and (2) ion composition, on the

solitary waves. The parameters we use are based on FAST and Polar observations of the auroral

acceleration region [Strangeway et al., 1998; McFadden et al., 1999c]. In order to model the

observed plasma parameters, we include hydrogen and oxygen ions, since both species are

usually present in ion beams in the auroral acceleration region. Previous one-dimensional (1-

D) studies of solitary waves [Hudson et al., 1987] have shown that the inclusion of both ion

species results in the two-stream instability which affects the range of conditions under which

solitary waves can form. Further 1-D studies [Gray et al., 1992] showed that solitary waves

formed more quickly when oxygen was present than when only hydrogen was included. We

will compare the results of our simulations to theories and recent observations of ion solitary

waves. In section 6.2 we describe the details of the simulation. Section 6.3 presents results of

some of the simulation runs. Comparison to observation and a discussion of the significance of

our studies are given in section 6.4.

6.2 Simulation Details

Our simulations were done using ES2 (see Chapter 4), a 2.5-dimensional, electrostatic part-

icle-in-cell code with periodic boundary conditions. See Table 6.1 for details on simulation

parameters used and the physical values that they correspond to. A 128 by 128 grid was used

for the runs presented here, with each grid cell being one Debye length long on a side. The

simulations were run with time steps equal to 0.3 times the inverse electron plasma frequency

(ω−1
pe ), with 10,000 iterations done for each run. In addition, runs were completed with a

1024 by 128 grid and with time steps of 0.03 ω−1
pe to examine numerical effects. Potential
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Parameter Simulation Value Physical Value

Grid size 128 by 128 21.2 km by 21.2 km

Size of each grid box 1 λD by 1 λD 165 m by 165 m

Plasma frequency 1 ωpe 9 KHz

Number of time steps 10,000

Length of time step 0.3 ω−1
pe 33 µs

Electron cyclotron frequency 9 ωpe 81 kHz

Electric field 0.6 Te/eLx 14 mV m−1

Hydrogen to electron mass ratio 100 1,836

Helium to hydrogen mass ratio 4 4

Oxygen to hydrogen mass ratio 16 16

Table 6.1: Simulation Parameters

plots were averaged over 100 iterations (30 ω−1
pe ) in order to average out high-frequency noise.

The plasma was magnetized so that the electron cyclotron frequency was equal to 9 times the

electron plasma frequency. The chosen value for the cyclotron frequency leads to a highly

magnetized plasma, which previous studies [Barnes et al., 1985] had indicated was necessary

for solitary wave formation. An electric field equivalent to a potential drop of 0.6 Te across

the simulation box was applied along the magnetic field direction. The applied electric field is

added to simulate the field-aligned potential drop seen in the auroral acceleration region, as has

been done in previous particle-in-cell (PIC) studies of solitary waves [Marchenko and Hudson,

1995]. This electric field accelerates the particles and results in relative drifts which provide

the source of free energy for the solitary waves.

Simulations of two-, three-, and four-species plasmas are presented here. In the two-species

cases the plasma species used are a stationary hot electron population and a hydrogen beam

(with the physical number density of each being 1 cm−3). In the three-species cases an oxygen

beam is added and in the four-species cases helium is added. A study of ion beam events in
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the auroral zone using FAST [McFadden et al., 1999c] data found that the ratio of O+ number

density to H+ number density ranged from 0.28 to 1.44, with typical values being around 1.

McFadden et al. [1999c] also found that the ratio of He+ number density to H+ number density

ranged from 0.20 to 0.67, so helium ions could also play a role in the dynamics of ion-associated

solitary waves. The oxygen to hydrogen number density ratio of 1 was chosen for the three-

species cases since it is fairly typical of the observations. For the four-species cases, the oxygen

to hydrogen and helium to hydrogen ratios were chosen to be 0.5. McFadden et al. [1999c] also

found plasma sheet ion densities which ranged from much smaller than the beam densities up

to comparable densities. Since the plasma sheet ion densities were usually smaller and not

believed to be necessary for the production of solitary waves we choose to ignore the plasma

sheet population for the purposes of this study, though future studies will include it. The plasma

sheet ion populations would probably slow the solitary waves since the beams would probably

transfer momentum to the relatively stationary plasma sheet populations, but the remainder the

behavior of the solitary waves would probably remain unchanged.

The ion beams start out with equal energies, giving them different velocities, which leads to

two-stream interactions between the beams [Bergmann et al., 1988]. Simulations were run with

the ratio of hydrogen to electron mass equal to 100 to conserve computing time [Barnes et al.,

1985], while the oxygen to hydrogen mass ratio was 16. The plasma species parameters for

the four-plasma species cases are shown in Table 6.2 and were chosen to follow the parameters

recently observed [McFadden et al., 1999c]. The parameters used for the three-species cases

are identical, except that all of the helium particles are replaced by oxygen, and for the two-

species case, all of the helium and oxygen are replaced by hydrogen. In the simulations all

values are normalized, and the physical units matching these choices were as follows. The

electron temperature was initially 0.5 keV, while both ion species had temperatures of 0.1 keV.

The ion beams were chosen to have drift energies ranging from 2 to 32 keV. Some of these drift

energies are higher than the range from 0.8 to 10 keV seen by FAST [McFadden et al., 1999c],

but the higher values were used so that there would be a wider range over which to determine
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Electron Proton Helium Oxygen

Number of particles 13,1072 65,536 32768 32768

Temperature (Te) 1 0.2 0.2 0.2

Beam speed (vte) 0 0.2-0.8 0.1-0.4 0.05-0.2

Table 6.2: Species-Dependent Parameters

the effects of changing the beam energy.

6.3 Simulation Results

Results of a simulation with a hydrogen beam of speed 0.4 vte and an oxygen beam speed of 0.1

vte are shown in Figure 6.1, where vte is the electron thermal speed. The solitary waves can be

identified as nearly circular depressions in the electrostatic potential in these simulations (see

Figures 6.1e and 6.1f). At the beginning of a simulation run, the potential is flat, but electro-

static ion cyclotron wave perturbations in the potential begin to build up. These perturbations

occur at both the hydrogen and oxygen cyclotron frequencies. These waves may be caused by

the two-stream instability between the hydrogen and oxygen beam, since the two-stream insta-

bility is expected to excite obliquely propagating ion cyclotron waves [Bergmann et al., 1988;

Gray et al., 1990], though not parallel propagating ion cyclotron waves [Bergmann and Lotko,

1986], in the conditions presented in these simulations. In fact, linear dispersion relation calcu-

lations performed for these conditions yield unstable ion cyclotron modes. These ion cyclotron

waves may be a generation mechanism for the solitary waves.

Solitary structures begin to form after ∼ 400 ω−1
pe . They propagate in the beam direction and

last between 150 and 2000 ω−1
pe , with typical lifetimes of ∼ 400 ω−1

pe . The solitary structures

are circular in shape with radii of the order of 20 λD. The size of the structures changes during

their lifetime, with a typical solitary wave starting out small both in amplitude and spatial size,

growing for a time, then shrinking and dissipating. The shapes vary somewhat between solitary

waves in the same run, with the shapes having a range of oblateness.
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Figure 6.1: Phase space densities for (a,b) the hydrogen ions and (c,d) the oxygen ions, as well

as (e,f) the electrostatic potential, for iterations 4450 (1335 ω−1
pe ) and 4550 (1365 ω−1

pe ). The

electrostatic potential are in units of kTe0
/e, where Te0

is the original electron temperature.

The phase space density plots are in particles per phase space grid box, where the phase space

grid is divided into 128 in the X direction and 100 in the VX direction. These plots are from the

8-keV beam run, which corresponds to beam speeds of 0.4 vte and 0.1 vte for the hydrogen and

oxygen beams, respectively. The electrostatic potential shown is averaged over 100 iterations

(30 ω−1
pe ) to remove high-frequency oscillations. The solitary waves are the dark, circular areas

of negative potential, and they move from right to left with ion beams. This is the same direction

as the ion beams and applied electric field and the opposite direction from the background

magnetic field.
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The development of the solitary structures is also evident in the phase space densities of

the plasma species (see Figures 6.1a-6.1d). Initially, all species are Maxwellians, but the dis-

tributions begin to show sizeable fluctuations at about the same time that solitary structures

first appear in the potential. These fluctuations tend to be in phase spatially between species,

with the major peaks and troughs of the phase space density tending to line up across species.

These fluctuations move in the ion beam direction, as the potential structures do. As the simula-

tion progresses, the phase space fluctuations become more pronounced. The simple sinusoidal

forms of the early fluctuations are replaced by more complicated forms. The two-stream insta-

bility leads to an interesting phase space structure in the hydrogen ions (see Figures 6.1a and

6.1b), with a pattern resembling a standing wave. At the antinodes there is a peak in both the

negative and positive sides of the velocity axes in the phase space density at the same x value,

with a hole in the phase distribution between. At the nodes the phase density reaches its highest

values, and particles are spread over a smaller range of speeds. We believe this complex pattern

is caused by the balance of the two-stream interaction which tends to bring the hydrogen drift

speed down to the oxygen drift speed, and the electric field which tends to accelerate the hydro-

gen ions more quickly than the oxygen ions. Phase space densities of this type are seen only in

the three-species cases. In the two-species cases the hydrogen phase space densities resemble

those seen in the oxygen phase space density shown in Figures 6.1c and 6.1d. No standing

wave patterns are formed in these cases, though sinusoidal phase space oscillations do occur.

It is likely that the extra complexity seen in the three-species cases is due to the two-stream

interaction. In the four-species cases, the hydrogen phases space densities look similar to those

in the three-species cases, and the helium and oxygen phase space densities look similar to the

oxygen phase space density in the three-species case.

The effect of the two-stream interaction is evident in the behavior of the ion species drift

speeds, as shown in Figure 6.2. The momentum transfer between the ion species is evident in

the sharp fall in the hydrogen drift speed and the rise in the oxygen drift speed centered around

iteration 4000 (1200 ω−1
pe ). This time period is also when the solitary wave activity is greatest.
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Figure 6.2: Plot showing the ion drift speeds, with a logarithmic scale in units of the initial

electron thermal speed (vte), versus iteration, where each iteration is 0.3 ω−1
pe . Figure 6.2 is for

the case where the initial hydrogen drift speed was 0.4 vte and the initial oxygen drift speed

was 0.1 vte.
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Though the two-stream instability works to equalize the beam speeds of the two ion species, the

applied electric field prevents the complete equalization. After iteration 5000 (1500 ω−1
pe ) the

solitary wave activity begins to dissipate, the effects of the applied electric field dominate, and

both ion species increase their drift speeds. As with the drift speeds, the effects of the solitary

waves are also evident in the parallel (Figure 6.3) and perpendicular (Figure 6.4) drift energies

of the plasma species. The ion species both have peak heating rates parallel to the magnetic

field around iteration 4000, owing to the interaction of the ions with the solitary waves. After

the solitary waves dissipate, the parallel thermal energies of the ion species level off, and the

hydrogen ions even cool slightly. The electron heating rate is more constant, though the heating

rate does peak when the solitary waves are dominant. The heating rate perpendicular to the

magnetic field for the ions also peaks while the solitary waves are dominant (Figures 6.4b and

6.4c). The ions show the effects of ion cyclotron waves, with oscillations at the corresponding

ion cyclotron frequency evident in both ion species. The electrons show very little heating in

the perpendicular direction because the time step size of 0.3 ω−1
pe does not resolve oscillations

of the order of the electron cyclotron period, ∼ 0.1 ω−1
pe .

Some of the physical parameters used for the runs presented here were varied in other runs

to examine their effects on the results. The applied electric field was varied, in order to see

how it affected the solitary waves. Solitary waves do not develop in this simulation if the field

is omitted, probably because the instabilities which lead the solitary waves quench too quickly

without the constant drive of the applied electric field. Decreasing the value used for the electric

field increased the length of time it took for the solitary waves to develop and decreased the

potential drop seen in the solitary waves. Utilizing Ωce/ωpe = 9 leads to a highly magnetized

plasma, which previous studies with cold plasma [Barnes et al., 1985] indicated was necessary

for solitary wave formation. To test whether this was the case when there was no cold plasma,

several runs with lower magnetic fields (i.e., Ωce = 1 ωpe and 0.1 ωpe, compared to the original

value of 9 ωpe) were done. These runs still had solitary waves, though they were smaller in

potential amplitude and slightly more oblate in the perpendicular direction.
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Figure 6.3: The parallel thermal energy, normalized to the species initial thermal energy, versus

iteration, where each iteration is 0.3 ω−1
pe , shown for the (a) electrons, (b) hydrogen ions, and

(c) oxygen ions. Figure 6.3 is for the case where the initial hydrogen drift speed was 0.4 vte

and the initial oxygen drift speed was 0.1 vte.
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Figure 6.4: The perpendicular thermal energy, normalized to the species initial thermal energy,

versus iteration, where each iteration is 0.3 ω−1
pe , shown for the (a) electrons, (b) hydrogen ions,

and (c) oxygen ions. Figure 6.4 is for the case where the initial hydrogen drift speed was 0.4

vte and the initial oxygen drift speed was 0.1 vte.
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Several computational parameters were varied in order to isolate any numerical effects on

the simulated solitary waves. Additional runs were performed with grid sizes up to 1024 λD

along the magnetic field line to ensure that particle recycling due to the periodic boundary con-

ditions did not alter the results. These runs gave results which were equivalent to those shown

here. The effects of the time step size were also tested by using a time step that was a factor

of 10 smaller in one case (0.03 ω−1
pe instead of 0.3 ω−1

pe ). This change had no noticeable effect

on the solitary wave behavior, though electrons did heat more in the perpendicular direction

than in Figure 6.4a, since this time step size resolved the electron cyclotron time scale. In the

cases with a time step of 0.3 ω−1
pe the electrons essentially move on their guiding center orbits

with no cyclotron motion. The effects of the number of simulation particles per grid cell were

also tested by performing a simulation run with 8 times as many particles per grid cell. The

behavior of the solitary waves was not changed in this run, though there was a decrease in noise

which allowed for averaging over fewer iterations.

In order to see how the solitary wave behavior varied with ion beam characteristics, simu-

lation runs were performed for a range of ion beam energies, which were equivalent to initial

hydrogen beam drift speeds between 0.2 and 0.8 vte. The speeds at the lower end of this range

are more typical of what is observed in the auroral region, but a wide range of drift speeds was

examined in order to study the relationship between beam drift speed and solitary wave speed.

Runs with this range of beam energies were made with hydrogen, oxygen and helium beam, as

well as with hydrogen and oxygen beams, and with hydrogen beams, in order to assess the ef-

fects of the multiple species beams on the solitary waves. The speeds of the solitary waves were

determined by following the minimum potential of a structure between iterations to determine

how far the structure moved. The solitary wave structures are not always symmetrical, so the

minima of the potential do not always fall at the location that is the center of the structure. This

leads to uncertainty in the solitary wave speeds, which necessitates averaging the speeds over

several frames of the electrostatic potential, or at least 150 ω−1
pe , in order to get accurate speeds.

These average speeds for each solitary wave are then averaged for a few separate solitary waves
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to find typical speeds for a run, and they are plotted against beam speeds in Figure 6.7. The

average solitary wave speeds for all runs lie below the hydrogen beam speed. In the cases

with both hydrogen and oxygen the solitary wave speeds are between the two beam speeds. In

the cases with hydrogen, oxygen, and helium all of the solitary wave speeds except one were

above the helium beam speed and all are above the oxygen beam speed. This result matches

what has been observed by the Polar spacecraft in the auroral acceleration region. Bounds et al.

[1999] found, using Hydra ion distribution data and assuming that both H+ and O+ had equal

energies, that the solitary waves had speeds between the beam speeds of H+ and O+. Further

Polar spacecraft studies found [Dombeck et al., 2001], using H+ and O+ distribution data from

TIMAS, that the ion solitary waves had speeds between the measured H+ and O+ beam speeds.

The TIMAS data used to find the ion beam speeds is shown in Figure 6.5. Note that the ion

beams in Figure 6.5 have very spread distributions which suggests that the beams were heated

by waves. The plot of the solitary wave speeds versus potential amplitude for the Polar ob-

servations in Figure 6.6 shows that the solitary wave speeds are between the ion beam speeds.

The electrostatic potential amplitude also shows dependence on the initial beam energies,

as shown in Figure 6.8. The dependence shown is basically linear, though there is scatter.

The scatter is to be expected since the plotted potential amplitudes are the average amplitude

of a particular solitary wave for a given simulation run. The general trend of having larger

amplitudes when larger beam speeds are used can be explained by the greater free energy made

available by the more energetic beams, which is converted into electrostatic potential energy by

the solitary structures.
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Figure 6.5: The TIMAS distribution plot for a region where solitary waves were detected. The

top panel show the hydrogen ion beam with a speed of approximately 400 km s−1 and the

bottom shows the oxygen beam with a beam speed of roughly 100 km s−1. This plot is from

Dombeck et al. [2001].
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Figure 6.6: Solitary potential amplitude versus potential amplitude observations from Polar.

The techniques used to make these observations is described in Chapter 5 and more detailed

results of this type are presented in Chapter 7. The dashed and the dotted line in this plot

represent the hydrogen and oxygen beam speeds respectively. This figure shows that the solitary

wave speeds lie between the beam speeds. This plot is from Dombeck et al. [2001].
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Figure 6.7: Plots showing solitary wave speeds and beam speeds at the time of the measured

solitary waves versus starting hydrogen beam speed for (a) hydrogen beam only runs, (b) hy-

drogen and oxygen beam runs, (c) and hydrogen, helium, and oxygen runs ((b) and (c) are on

following page). All speeds are normalized to the starting electron thermal speed. The beam

speeds plotted are taken from the time when the solitary waves are present in the simulations.

The beam speeds change during the simulation runs owing to interaction with the other species

and with the applied electric field.
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Figure 6.7 (continued)
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Figure 6.8: The electrostatic potential amplitude, in units of kTe/e, versus starting hydrogen

beam velocity, in units of vte, plotted for each of the two beam cases that are plotted in Figure

6.7a. The electrostatic potential amplitudes plotted are the average amplitudes that developed

for one solitary wave studied in each run, and they are normalized by the electron temperature

at the time the solitary waves were present.
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6.4 Discussion

6.4.1 Comparison to Theory

We have presented new results on ion solitary structures which differ from previous studies

because the plasma parameters in the simulation are based on recent Polar and FAST data. The

absence of cold plasma and the inclusion of oxygen ions distinguish this work from previous

studies [Barnes et al., 1985; Marchenko and Hudson, 1995]. Previous 1-D simulations which

included cold plasmas and one ion beam found that solitary waves can form from linear ion

acoustic waves that are pumped by the decay of ion beam modes [Gray et al., 1991]. In our

H+ beam cases similar processes may be occurring, with the hot electrons providing the back-

ground population in place of the cold plasma. For the H+ and O+ beam cases, comparison

with studies including both species is enlightening. Linear analysis of H+ and O+ beams of

equal energies showed that two-stream instabilities can excite modes that propagate both par-

allel to [Bergmann and Lotko, 1986] and oblique to [Bergmann et al., 1988] the background

magnetic field. The modes excited by the two-stream instability are related to the acoustic

and cyclotron modes of hydrogen and oxygen. The 1-D simulation studies including cold H+

and O+ beams found that the ion two-stream instability led to ion acoustic turbulence which

grew nonlinearly into solitary waves [Gray et al., 1992]. Similar processes are at work in the

H+/O+ beam cases presented here, so that the solitary waves from both H+ and H+/O+ cases

are likely being formed from ion acoustic turbulence, and we classify these structures as “ion

acoustic solitary waves.” The term “ion acoustic solitary wave” is used instead of “ion acoustic

soliton” because it is not clear that these structures meet the strict mathematical definition of

the term “soliton.”

The propagation speeds of the solitary waves in this study fit reasonably well with theory.

Ion acoustic soliton theory predicted that the solitary waves should have a velocity equal to the

ion acoustic speed relative to the reference frame of the cold ion species [Lotko, 1983], which

is the same as the phase velocity of linear ion acoustic waves. This idea was later extended to
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allow for the replacement of the cold background population by an ion beam of another species

[Qian et al., 1989]. When this theory was applied to simulation studies, it was found that the

solitary structures slow down as their amplitude increases [Hudson et al., 1983] (though the

solitary waves shown here do not seem to slow down as they grow). So the difference between

the speed of the solitary waves and the population they are riding on is expected to be less than

the ion acoustic speed. Applying these principles to the H+ beam case, it would be expected

that the solitary waves would move with a speed somewhat less than 0.1 vte slower than the

hydrogen beam speed, since the hydrogen acoustic speed is 0.1 vte. From Figure 6.7a it can

be seen that the speed difference between the solitary waves and the hydrogen beam is of the

order of the hydrogen acoustic speed, but for the higher speed beams the difference tends to be

substantially greater than 0.1 vte. The speed discrepancies for high initial beam speeds may be

a result of the fact that the electrons are heated during the simulation, with this heating being

more pronounced in the higher beam speed cases, which causes an increase of the hydrogen

acoustic speed from its starting value. The solitary wave speeds in the H+ and O+ beam cases

are also consistent with describing the structures as ion acoustic solitary waves. The speeds

of the solitary waves are between the beam speeds of hydrogen and oxygen beams, as would

be expected since the most unstable linear modes are in this region [Bergmann et al., 1988].

Some shift in the phase velocities is expected in the context of these nonlinear simulations, but

a reasonable first approximation is to expect that the solitary structures will propagate at speeds

about equal to the hydrogen acoustic speed relative to one of the beam species. As shown in

Figure 6.7b, for low beam speeds, the solitary wave speeds relative to the hydrogen beam speed

are less than 0.1 vte, while for the higher beam speeds they are much more than 0.4 vte. The

solitary wave speed and the oxygen beam speed lines track each other more closely, so it is

possible that the solitary structures are hydrogen modes riding on the oxygen beam, instead of

the hydrogen beam. This result is consistent with speculation that a second ion species could

take the place of a cold background ion population [Cattell et al., 1999]. The 0.05 - 0.15 vte

between the oxygen beam and the solitary waves is very similar to the velocity differences seen
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Figure 6.9: This plot shows the parallel (black asterisks and line) and perpendicular (red pluses

and line) scale size in Debye lengths versus the potential amplitude. The results shown are for

the same solitary waves shown in Figure 6.8. The dotted lines are linear fits to the results.

between the hydrogen beam and the solitary structures in the H+ beam case.

The scale sizes for the observed solitary waves are not consistent with ion acoustic soliton

theory. The scale sizes seen here were ∼ 20 λD in both directions, though on average the per-

pendicular scale sizes were somewhat smaller than the parallel. From Zakharov and Kuznetsov

[1974] it is expected that these solitary waves would have scale sizes that scale as:

l⊥
l‖

=

√

1 +
ρ2

s

λ2
D

=

(

1 +
mi

me

(ωpe

Ωe

)2
) 1

2

(6.1)

ρs = cs/Ωi is the ion acoustic scale size. Marchenko and Hudson [1995] pointed out that care

must be taken when comparing scale size results to observations in cases like this when an

artificial electron to proton mass ratio is used. So substituting into equation 6.1 for the case

93



of the simulation mass ratio yields a perpendicular to parallel scale size ratio of 1.49, while

using the real mass ratio gives 4.86. So the predicted simulation value for the scale size ratio is

greater than the simulation results of . 1. Also, if the solitary structures in these simulations

were ion acoustic solitons, it would be expected that the physically observed solitary structures

would be much larger in the perpendicular direction (∼ 100 λD) than in the parallel direction.

Another important consideration is that since the potential is averaged over time, the parallel

size of the solitary waves may be exaggerated owing to the motion of the solitary waves along

the magnetic field during the time period in which the averaging takes place.

Soliton theory predicts that the potential amplitude and scale size will be inversely related,

but these simulation results (Figure 6.9) do not follow this relation. In Figure 6.9 both parallel

and perpendicular scale sizes are directly proportional to the potential amplitude. The trend is

not strong and it could be argued that the scale size is independent of the potential amplitude,

but the trend is definitely not inversely proportional. These results are consistent with Polar

observations of the potential amplitude/width relation which showed a definite trend of the

solitary wave scale size being proportional to its width [Dombeck et al., 2001]. Also, note that

in Figure 6.9 the perpendicular scale sizes tend to be somewhat smaller than the parallel scale

sizes. This may be an artifact of averaging over several iterations for the potential plots that are

used to determine the scale size.

In contrast to previous results, solitary waves formed for cyclotron frequencies less than the

electron plasma frequency [Barnes et al., 1985; Marchenko and Hudson, 1995]. The difference

in plasma parameters probably explains this discrepancy. The earlier work did not include O+

or He+ and did include cold plasma, which had a smaller gyroradius. The cold plasma would

have been more strongly affected by the magnetic field, so that in those previous studies the

magnetic field may have played a more important role in sustaining the solitary waves as seen

in simulations of electron holes.

Since a cold background population was required to support BGK ion phase space holes

in formulations where thermal fluctuations are invoked as a generation mechanism [Tetreault,
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1991], it is unlikely that the solitary waves shown herein are BGK phase space holes of that

type. Although it is possible that the oxygen beam could act as a cold population for the

hydrogen beam, this would still not explain the structures seen in the hydrogen-only beam case.

So we believe that it is unlikely that the structures we see are BGK ion phase space holes caused

by thermal fluctuations in cold plasma. However, the results for the H+ and O+ beam cases

do show structures that appear to be phase space vortices. It is possible that a cold population

is not required and that thermal fluctuations in a hot plasma can generate phase space holes,

though we are unaware of any theoretical work on this mechanism. It is also possible that the

structures that we see are BGK phase space holes that have been generated by the two-stream

interaction, by ion acoustic waves, or by ion cyclotron waves.

6.4.2 Comparison to Observations

The solitary waves observed in the simulations described herein are in agreement with recent

Polar observations on a number of points. The speeds of the simulated solitary waves presented

here are intermediate between the O+ and H+ beam speeds, consistent with those seen by Polar

[Dombeck et al., 2001]. This result is in contrast to previous simulation studies of ion-related

solitary waves including cold plasma [Marchenko and Hudson, 1995], which resulted in much

lower speeds. These lower speeds are not surprising, since there was a cold population to sup-

port them, and speeds of the order of bulk velocity or beam velocities would be expected when

there is no cold plasma present. The speeds found in those simulations matched the obser-

vational results of Boström et al. [1988] from Viking which gave the solitary wave speeds as

being between 5 and 50 km s−1, much less than the ion beam speed. Note that recent FAST

observations found that some of the highest amplitude solitary waves had speeds above the

hydrogen beam speed [McFadden et al., 1999b, 2002]. This is not observed in our simulations.

The size of the simulated ion solitary structures, ∼ 10 λD parallel to the magnetic field, is also

consistent with the structure sizes seen by Polar [Bounds et al., 1999; Dombeck et al., 2001].

Although scale sizes perpendicular to the magnetic field have not been observed in as much
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detail, owing to difficulties in determining sizes transverse to the direction of the motion, pre-

liminary results [Dombeck et al., 2001] suggest that the scale size in the perpendicular direction

is slightly larger (∼ 15 λD) than in the parallel direction. This result contradicts the scaling

expected if these structures are ion acoustic solitons (∼ 100 λD due to the artificial mass ratio),

but it roughly agrees with the size directly measured in the simulations. The potential ampli-

tudes, eφ/kTe, for the lower beam speeds presented here are of the order of 0.1, as has been

seen by Polar [Bounds et al., 1999; Dombeck et al., 2001]. The potential amplitude was ∼ 0.1

in the lowest beam energy (0.2 vte - 2 keV) case presented here. For the larger beam speeds

the simulated potential amplitudes (eφ/kTe & 0.1) are somewhat larger than the typical values

seen by Polar (eφ/kTe . 0.1) [Dombeck et al., 2001], but the beam speeds in those simulation

runs were also greater than the Polar observations. The potential amplitudes for similar beam

speeds are consistent between the simulations and the Polar data. Further comparison of these

simulation results will be made in Chapter 7.

6.5 Conclusions

Recent spacecraft observations of ion solitary waves and plasma parameters in the auroral zone

suggested the need to perform new simulations. When input parameters for the simulations are

updated to exclude cold plasma, as determined from recent FAST observations, and include

hydrogen and oxygen beams, solitary structures result which resemble the observed structures

in the following ways:

1. The solitary wave speeds fall between the beam speeds of the hydrogen and oxygen

beams, as would be expected if the two-stream instability was involved. Ion cyclotron

waves, which may be generated due to the two-stream instability, are also present before

the solitary waves form as would be expected if the solitary waves are caused by the

two-stream instability.
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2. The structure sizes observed in the simulation are ∼ 20 λD both parallel to and per-

pendicular to the magnetic field line. If these structures are assumed to be ion acoustic

solitons, the perpendicular scale size to compare to the observations would be ∼ 100 λD,

owing to the effects of the artificial mass ratio used in this study. Observations find the

sizes to be of the order of 10 λD.

3. The potential amplitude of these ion solitary waves is similar to what has been seen in

the observations, eφ/kTe ∼ 0.1.

Further work needs to be done to better understand ion solitary waves in the magneto-

sphere. Among the unanswered questions is why ion solitary waves have only been observed

in the auroral zone, while electron solitary waves have been observed in many regions. Earlier

speculation that ion solitary waves were not observed at high altitudes owing to the lower ratio

of Ωe/ωpe [Cattell et al., 1999] has not been borne out by this study, though it is possible that

differences in plasma distribution function shape explain the lack of observations of ion soli-

tary waves in other regions. Simulations with smaller time steps and spatial scales need to be

performed, in order to better see how the spatial structure of ion solitary waves evolves. Studies

including He+ and hot plasma sheet ions should be performed as well, since these populations

are observed in upward beam regions.
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Chapter 7

Polar Spacecraft Solitary Wave Survey

7.1 Introduction

In this chapter, results from a survey of solitary waves observed in the Polar EFI data will be

presented. Previous observational studies of solitary waves have looked at smaller samples of

solitary waves and have usually concentrated on either ion or electron solitary waves or looked

at solitary waves in a specific region of the magnetosphere.

In this survey, all Polar spacecraft high-time resolution bursts for the year 1997 were searched

for solitary waves. This year was chosen because 1997 was the year when the most high-time

resolution bursts were taken. A year’s worth of data was analyzed both to allow for a high

number of bursts and to cover a range of regions of the magnetosphere (see Figures 5.1 and

7.1).

This survey of SW burst data lends itself to several types of analysis. In section 7.2 the

spatial distribution of the bursts is examined. In section 7.3, properties of the solitary waves

themselves are discussed. In particular, results for the velocities, potentials, and scale sizes of

both low altitude ion solitary waves and high altitude electron solitary waves are presented.

98



Auroral 
 Accel. 
Region

Polar S/C

PSBL

Plasma Sheet
N

S

Cusp

Figure 7.1: This figure shows the Polar spacecraft’s approximate orbit in 1997 superimposed

on a diagram of the magnetosphere (adapted from A. Keiling).
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7.2 Spatial Distributions of Bursts

The spatial distribution of bursts examined in this study are shown in Figure 7.2 for the equa-

torial plane, Figure 7.3 for the XZ plane, and Figure 7.4 for the YZ plane in Geocentric Solar

Ecliptic (GSE) coordinates (the plot of the YZ plane looks similar to the plot of the XZ plane).

In GSE coordinates, the origin of the coordinate system is the center of the Earth, the X axis

is defined by the line from the Earth to the Sun, the Z axis is defined as being perpendicular to

the ecliptic plane, and the the Y axis points opposite the direction of the motion of the Earth

around the Sun.

The most striking feature of these plots is the regular circular patterns in Figure 7.2. These

patterns are the artifacts of Polar EFI’s burst selection criteria. EFI takes high-time resolution

data constantly and stores the data in an onboard memory buffer, but due to telemetry con-

straints that data is sent back to Earth for only selected bursts [Harvey et al., 1995]. In the burst

selection mode that EFI was in for 1997, three high-time resolution bursts were saved per orbit.

In order to ensure that high-time resolution data were saved for multiple regions of the mag-

netosphere, one of the burst selection criteria divides Polar’s orbit (see Figure 7.1) into three

regions and requires one burst in each of these regions in each of Polar’s orbits. One region is

the low altitude portion of Polar’s orbit in the auroral zone and the other two portions equally

divide the high altitude portion, with these two portions corresponding to dayside and nightside

or dawnside and duskside depending on the plane of Polar’s orbit. Within a given region the

time period with the largest amplitude electric field is The circular patterns are a results of the

interaction of the burst selection criteria and the precession of Polar’s orbit.

The circular pattern in the center of Figure 7.2 is the low altitude bursts, while the outer

two circles are the high altitude bursts. The precession of Polar’s orbit in the XY GSE plane

takes less than a year, which causes the circular patterns to overlap. The high altitude circular

patterns do not close on themselves because besides precessing in the XY GSE plane, Polar’s

orbit also precesses toward the XY plane. Figure 7.5 shows the GSE position of the bursts

plotted against time. The three separate burst selection regions and the periodic nature of the X
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Figure 7.2: Distribution of Polar spacecraft high-time resolution bursts in the XY plane in GSE

coordinates. The positions of the bursts are plotted in units of the radius of the Earth (RE). The

red +’s stand for bursts where no solitary waves were found and the blue *’s standing for burst

where solitary waves were found.
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Figure 7.3: Distribution of Polar spacecraft high-time resolution bursts in the XZ plane in GSE

coordinates. The positions of the bursts are plotted in units of the radius of the Earth (RE). The

red +’s stand for bursts where no solitary waves were found and the blue *’s stand for bursts

where solitary waves were found.
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Figure 7.4: Distribution of Polar spacecraft high-time resolution bursts in the YZ plane in GSE

coordinates. The positions of the bursts are plotted in units of the radius of the Earth (RE). The

red +’s stand for bursts where no solitary waves were found and the blue *’s stand for bursts

where solitary waves were found.
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Group of Bursts Number of Bursts

All bursts in survey 1367

High altitude bursts 935

Low altitude bursts 432

High altitude burst with solitary waves 126

Low altitude bursts with solitary waves 103

Table 7.1: Statistics of Burst Survey

and Y coordinates of the bursts are evident in this figure.

Besides showing where Polar’s bursts occurred, Figures 7.2 – 7.5 also show in which bursts

solitary waves were detected by the automatic program, Delaytime, described in Chapter 5.

Some summary statistics about the bursts are also presented in Table 7.1. It is apparent that low

altitude bursts were more likely to have solitary waves detected by Delaytime than high altitude

bursts. The selection criteria used by Delaytime explain at least part of the difference. Waves

seen at high altitude are on average smaller at high altitudes than at low altitudes, so it less likely

for high altitude waves to meet the minimum amplitude requirement. The angle requirements

are also easier to meet in the low altitude case because Polar’s spin plane tends to stay closer

to the plane of the magnetic field at low altitudes. Since the selection criteria places constraints

on the total angle between the spin plane booms and the magnetic field, minimizing the angle

between the magnetic field and the spin plane allows for a larger range of allowed angles with

in the spin plane for the booms. Due to these differences in the effects of the selection criteria

between the high and low altitudes, it is difficult to make any conclusion about the relative

detection frequency of solitary waves in high and low altitudes.

Spatially within the low and high altitude regions the distribution of bursts is fairly random.

Some regions seem to have either an excess or deficit (such as the region around y=4 in Figure

7.2) in the number of bursts containing solitary waves, but for several regions it is difficult to

make any conclusions based on these clusters of burst. First, there is limited coverage of any
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Figure 7.5: Plots of the location of Polar spacecraft bursts in GSE coordinates and total geocen-

tric distance (distance from the center of the Earth) versus time in the year 1997. The positions

of the bursts are plotted in units of the radius of the Earth (RE). The red +’s stand for bursts

where no solitary waves were found and the blue *’s standing for burst where solitary waves

were found. 105



particular region, so the statistics involved in breaking the plots down and focusing on a particu-

lar small region are not very convincing. It is quite likely that the visible clusters were caused by

simple statistical fluctuations. Furthermore, no attempt to normalize for magnetospheric con-

ditions has been made in these plots. Since the magnetosphere is a dynamic system in which

the coordinates of magnetospheric regions vary depending on a variety of factors, ideally the

burst locations would be mapped to their invariant regions with the magnetosphere, instead of

using their physical coordinates. In this study, no attempt was made to track the global state of

the magnetosphere, so further analysis of the locations of bursts within the magnetosphere will

have to wait for further study.

7.3 Solitary Wave Results

The solitary waves from this burst survey have been divided based on two criteria: altitude and

whether they are associated with ions or electrons. The cut between low and high altitude was

set at a geocentric distance of 3 RE for this survey, since that was a natural cut in the burst

location data (See the bottom panel of Figure 7.5).

Separating ion solitary waves from electron solitary waves is a more difficult task. Several

methods were attempted before the following system was arrived at. First, negative potential

was required for ion solitary waves since ion solitary waves are expected to have negative

potentials. Next, since solitary waves are expected to have lower speeds, ion solitary waves

were required to have speeds and uncertainties that were finite and had the same sign. The

reasoning behind why the ion solitary waves are determined this way goes back to how solitary

wave velocities are determined (see Section 5.2.2). The velocities depend on the inverse of

the time delay determined from cross correlation and the time delay is only allowed to take

on discrete multiples of 25 µs. So, the fastest solitary waves for which a speed determination

can be made have time delays of ± 25 µs (depending on the direction of propagation of the

solitary wave) and time delays of 0 s are not uncommon. For the fastest measured solitary
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Ion solitary waves Electron solitary waves Total solitary waves

Low Altitude 153 213 366

High Altitude 30 (18) 1286 1316

Total 183 1499 1682

Table 7.2: Solitary Wave Types in Survey

waves, it is common for the error ranges on the speeds to extend to both positive and negative

values, which means that the direction of propagation of the solitary wave is uncertain. From

the dependence of the potential amplitude on the solitary wave speed (Equation 5.8), it is clear

that if the direction of the solitary wave is uncertain, then the polarity of the potential amplitude

is also uncertain. So the velocity criterion is equivalent to requiring that, up to the limits of the

uncertainty on its velocity, the solitary wave has a negative potential amplitude. Edge case

solitary waves with lower limits on time delay of one point typically have measured speeds

of ∼ 1000 km s−1, which is a higher speed than is expected for ion solitary waves. Solitary

waves with speeds of 1000 km s−1 that are classified as ion solitary waves, may have been

misclassified or there may be very energetic ion beams, but in either case Figure 7.6 shows that

there are few of them. Under this system, any solitary waves that do not meet the potential

amplitude and velocity criteria outlined above are classified as electron solitary waves. Other

velocity constraints were experimented with, including dividing the solitary waves into slow

(definitely ion), intermediate (mixture of ion and electron), and high (definitely electron) speed

solitary waves, but the results were not any more informative.

The numerical results of how this classification scheme divides the solitary waves are sum-

marized in Table 7.2. Notice that 30 solitary waves are classified as high altitude ion solitary

waves. High altitude ion solitary waves have not been reported previously, so these solitary

waves were examined more closely. When examined more closely, 12 of the 30 were classified

as questionable solitary waves based on their wave forms or the likelihood that they were part

of a periodic wave based on the nearby electric field signature. Of these 18 high altitude ion
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solitary waves, 12 had speeds higher than 900 km s−1. Though their error bars did not reach

the border line of 0 s time delay that is used for separation of ion solitary waves, the error bars

are close. So it is likely that these solitary waves that have been classified as high altitude ion

solitary waves are actually misclassified electron solitary waves. The misclassification would

be due to incorrect signs on the velocities of these solitary waves, which also flipped the sign

on the potential amplitude. The remaining 6 high altitude solitary waves are likely high altitude

ion solitary waves, but due to their low number compared to the number of solitary waves in

this survey more study of these high altitude ion solitary waves is required. In particular, it

would be useful to look at TIMAS and HYDRA data for the most reliable of the ion solitary

waves and see if ion beams are present while these solitary waves are present. Examination

of the TIMAS data for 2 of the 6 high altitude ion solitary waves has shown shown weak ion

beams moving in the correct direction to explain these structures.

In the remainder of this chapter, results for two groups of solitary waves will be presented.

Survey results for low altitude ion solitary waves, for which simulation results were presented

in Chapter 6, will be shown. Results for high altitude electrons solitary waves, which make up

the majority of the solitary waves observed in this study, will also be shown.

7.3.1 Velocity

Velocity is an important feature for characterizing solitary waves for comparison to theory and

to other observations of solitary waves. Figure 7.6 shows histograms of the velocity of both

the low altitude electron solitary waves and the high altitude electron solitary waves. The

average speed of approximately 300 km s−1 is consistent with previous studies of ion solitary

waves using Polar spacecraft data [Bounds et al., 1999; Dombeck et al., 2001]. Speeds of this

order would tend to be between the hydrogen and oxygen beam speeds observed in this region

[McFadden et al., 1999a], although detailed ion distribution data has not been analyzed for all

of the events in this study.

Since the speeds of the electron solitary waves are so near to the limits of this method of
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determining speed, it is more difficult to make definite conclusions about these results. It is clear

from Figure 7.6 that the vast majority of the solitary waves that have been classified as electron

solitary waves have time delays of 0 or 1 time point (0 or 25 µs). Speeds of this order are

consistent with FAST spacecraft observations slightly lower in the auroral acceleration region

[Ergun et al., 1998b] and with Polar PWI observations which have higher time resolution but

saturate at an amplitude a few mV/m [Franz et al., 1998].

Figure 7.7 shows the potential amplitude versus velocity for the low altitude ion solitary

waves in this study. The bulk of the points in this plot fall on a line, making it evident that

the solitary wave speed is proportional to the potential amplitude. This matches the previous

results for the simulation shown in Figure 6.8. There is some noticeable scatter in Figure

7.7. In particular, most of the solitary waves with positive velocities are probably electron

solitary waves that were misclassified due to the incorrect sign on their speed leading to the

incorrect sign on their potential. Ion solitary waves are expected to have negative velocities,

which correspond to motion away from the ionosphere in our sign convention, since that is the

direction that auroral ion beams propagate.

The potential amplitude versus velocity for the high altitude electron solitary waves (Figure

7.8) is less clear. There is quite a bit of scatter, largely due to the fact that the direction of

propagation is so uncertain for the high speed solitary waves. Still despite the uncertainty,

roughly 75 percent of the electron solitary waves that have positive potentials. The vertical

bands evident in this plot are due to the fact that at high speeds the angle constraints on when

solitary waves can be detected leads to discrete bands of speeds that can be measured and other

ranges that cannot be measured. It is still apparent in this plot that there is a general trend of

speed being proportional to potential amplitude.

7.3.2 Potential Amplitude

The potential amplitude of a solitary wave plays an important role in our observations of solitary

waves since it is a principal way we discriminate between ion (negative potential amplitude) and
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Figure 7.6: These plots show histograms of the absolute value of velocity. The upper panel

shows results for the low altitude ion solitary waves, while the lower panel shows results for

the high altitude electron solitary waves. The velocities are separated into bins based upon the

number of of splined time data points their time delay was equal to. Note that the average

velocity does not include any of the zero time delay (infinite speed) solitary waves.
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Figure 7.7: This figure shows the solitary wave speed versus potential amplitude for the low

altitude ion solitary waves in this survey.
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Figure 7.8: This figure shows the solitary wave speed versus potential amplitude for the high

altitude electron solitary waves in this survey.

112



0 2 4 6 8 10 12 14
Width (km)

-200

-150

-100

-50

0

50

P
ot

en
tia

l A
m

p.
 (

V
)

Figure 7.9: This figure shows potential amplitude versus width for the low altitude ion solitary

waves.

electron (positive potential amplitude) solitary waves. Figure 7.9 shows the potential amplitude

versus width for the low altitude ion solitary waves in this survey. There is a definite trend

for the potential amplitude being proportional to the width of the solitary waves, as was the

case in previous Polar observations [Dombeck et al., 2001]. These results also agree with the

solitary wave simulations (Figure 6.9). This result is important because it directly contradicts

ion acoustic soliton theory which predicts that potential amplitude and the width of the soliton

structures should be inversely proportional. On the other hand, from BGK theory the potential

amplitude and width would be expected to be proportional [Tetreault, 1988]. So these results

support the idea that ion solitary waves are a BGK mode.

The plot of potential amplitude versus solitary width (Figure 7.10) is not as clean for the
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Figure 7.10: This figure shows potential amplitude versus width for the high altitude electron

solitary waves.

high altitude electron solitary waves. The negative potentials for this plot are most likely due

to solitary waves for which the direction is uncertain and the sign of the potential amplitude

is flipped. The trend of direct proportionality between potential amplitude and width is the

same as with the ion data, though there is more scatter. These results are consistent with BGK

theories and simulations of electron solitary waves [Muschietti et al., 1999b].

7.3.3 Potential Difference

The potential difference across solitary waves plays a prominent role in how the solitary waves

are affecting the particles in their surroundings. Figure 7.11 shows histograms of the potential

difference measured across the solitary waves observed in this study. Though the distribution

114



of potential differences is fairly symmetric in the low altitude ion solitary wave case, there

is a small tendency toward positive potential differences. Since these ion solitary waves are

traveling up the magnetic field line in the auroral acceleration region, a positive potential dif-

ference corresponds to the potential being higher after the solitary wave passes. In terms of the

solitary wave’s position on the magnetic field line, the ion solitary wave’s potential is higher

on its Earthward side. The sense of this potential difference is the same as the sense of the

electrostatic potential drop along the magnetic field line in the auroral acceleration region, so

these results suggest that the low altitude ion solitary waves may be weakly supporting this

auroral potential drop. Though this nearly symmetric distribution is consistent with previous

studies of ion solitary waves that suggested these structures had no little or no net potential

[Bounds et al., 1999; Dombeck et al., 2001], it is interesting that there is a tendency towards a

small net potential change seen here. These results are very similar to an earlier study of Viking

data which also found a small net potential, but concluded that the size was too small to be a

significant contributor to the auroral potential drop [Mälkki et al., 1993].

The potential difference for the high altitude electron solitary waves (lower panel of Figure

7.11) is more difficult to interpret. Due to the uncertainty of the direction of propagation of

many of the electron solitary waves, the sign of the potential difference is also uncertain. For

this reason, the high altitude electron solitary wave results can only be examined in terms of the

magnitudes of the potential drops, not in terms of a possible net potential along the magnetic

field line caused by these structures. It is interesting to note that the potential differences

seen here are approximately the same magnitude seen in the ion solitary waves and that the

magnitudes are predominantly negative.

7.3.4 Parallel Size

Figures 7.12 and 7.13 shows the parallel scale size of the solitary waves from this study. The

parallel size in this study is taken as the total length along the magnetic field, as opposed to

some studies where the Guassian half-width is used. The sizes in kilometers are quite similar
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Figure 7.11: This figure is a histogram of the potential difference across solitary waves, with

the upper panel being for the low altitude ion solitary waves and the lower panel begin for

the high altitude electron solitary waves. The black regions of the histogram represent solitary

waves that had a time delay 0 s.
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Max Min Mean Median Std. Dev.

Low Altitude Ion 122 3.5 27.0 21.9 21

High Altitude Electron 2500 1.3 37.8 13.6 146

All Electron 13100 1.3 46.4 14.8 364

Table 7.3: Statistics for normalized solitary wave parallel sizes (all values in λD).

for both the low altitude ion and high altitude electron solitary waves, with typical sizes being

about 4 km for both, but the normalized sizes differ. The wider range of the sizes relative to

typical values in both the ion and electron cases is likely due to uncertainties in the plasma

parameters used to normalize the data. In fact, in the normalized electron cases the plots are

cut off at 200 Debye lengths to focus on the majority of the data. The parallel sizes for the

electron solitary waves ranges up to 13000 Debye lengths, though only 28 and 33 data points

have values above 200 Debye lengths in the high altitude electron and all electron solitary wave

cases, respectively. A closer inspection of the data showed that most of the data points with

very high sizes came from several bursts, which supports the idea that these high values were

caused by errors in the plasma parameters used for normalization. Table 7.3 shows the statistics

for the normalized parallel size data. The size of the tails on the distribution for the parallel size

make the median values more appropriate than the mean values for use as typical values. So

the typical parallel sizes were 22 λD, 14 λD, and 15 λD, for the low altitude ion, for the high

altitude ion, and for all electron solitary waves.

These results are consistent with previous estimates of parallel scale sizes for ion solitary

waves [Bounds et al., 1999; Dombeck et al., 2001]. Previous studies of electron solitary waves

had lower parallel sizes for these structures. A previous Polar spacecraft study using the PWI to

examine electron solitary waves reported parallel sizes of 400-4000 m (4-40 λD) [Franz et al.,

1998]. A FAST study reported sizes of ∼ 500 m (8 λD), though those results are for low, not

high, altitude electron solitary waves so the discrepancy may be due to variation in the plasma

parameters [Ergun et al., 1998b, a].

117
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Figure 7.12: This figure shows histograms of the parallel scale size of the low altitude ion

solitary waves. The units for the data in the upper panel km, while the lower panel is normalized

by the Debye length.
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High Altitude Electron Solitary Waves
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Figure 7.13: This figure shows histograms of the parallel scale size of the electron solitary

waves. The top panel on this page show high altitude electron solitary wave results in km,

while the bottom panel shows the same results normalized by the Debye length. The plot on

the next page shows normalized results for all of the electron solitary waves from this study.

The blacked in regions correspond to 0 s time delay solitary waves for which the width is found

by using an arbitrary speed of 5000 km s−1.
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Figure 7.13 continued

7.3.5 Perpendicular Size

Since the perpendicular size of solitary waves cannot be measured directly, two methods of

studying the perpendicular size of solitary waves were attempted. One method is to use the

ratio of the perpendicular to the parallel electric field as evidence of the perpendicular scale

size of the solitary waves. The basic idea is that, neglecting other factors, the smaller the

perpendicular size of a solitary wave is, the larger the perpendicular electric field of a solitary

wave will be since the charge will be more compressed. One theory gives a specific functional

form to this relation for electron solitary waves:

L‖

L⊥
=

E⊥

E‖
=

(

1 +
ω2

pe

Ω2
e

)− 1

2

(7.1)

where L‖ and L⊥ are the parallel and perpendicular scales sizes respectively and E‖ and E⊥

are the parallel and perpendicular electric fields respectively [Franz et al., 2000]. This theory

is based on the idea that the spatial gradients on the charge density in the solitary wave will

120



Figure 7.14: This figure shows the ratio of hydrogen cyclotron frequency to the hydrogen

plasma frequency (which is roughly equal to the Debye length divided by the hydrogen gyro-

radius) versus the ratio of the perpendicular to the parallel electric field. The black dots are

for individual solitary waves. The red markers are for the same data separated into bins by the

frequency ratio. The medians of the data in bins are plotted with the error bars equal to the

limits of the measurements within a bin. This plot is for ion solitary waves observed at low

altitude (< 3 RE geocentric).
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be balanced by gyro-motion effects in the perpendicular direction and Debye shielding effects

in the parallel direction. The ratio of the perpendicular to the parallel electric field is plotted

against the ratio of the electron cyclotron frequency to the plasma frequency in Figure 7.15 for

all electron solitary waves seen in this study. Figure 7.14 is the same type of plot, but without

any theoretical line since it is not clear if the theory can be extended to ions. In the case of the

electrons, the trend of the data (as denoted by the red crosses) follows Equation 7.1 (as shown

by the green lines) reasonably well, though there is quite a bit of scatter. In particular, the results

for the high altitude electron solitary waves agree with Franz et al. [2000] results which were

for a smaller set of data with a more limited range of cyclotron frequency to plasma frequency

ratio. The ion results seem to be flat with the ratio being scattered around 1.

The other method of studying the perpendicular structure of the solitary wave involves look-

ing at the shapes of the perpendicular signals of the solitary waves as described in Section 5.2.3.

Figures 7.16 and 7.17 show the results of the study of the shapes for the low altitude ion and

high altitude electron solitary waves respectively. The majority of both the ion and electron soli-

tary waves have unipolar shaped perpendicular signals, as would be expected for a spacecraft

traversing an ellipsoid charge distribution. Previous studies have stated that the perpendicular

electric field signal of solitary waves tended to be unipolar, but have not examined these shapes

in detail [Ergun et al., 1998b; Bounds et al., 1999; Franz et al., 2000; Dombeck et al., 2001].

The proportion of non-unipolar (bipolar, flat, or unclassified) signals is much higher for the ion

solitary waves than the electron solitary waves. Ion cyclotron waves, which are present at low

altitudes, have frequencies near the effective frequency of the ion solitary waves and are likely

the cause of the higher proportion of non-unipolar signals. These ion cyclotron waves often

are apparent in the perpendicular electric field at the same time the solitary waves are observed

and they tend to make the perpendicular solitary wave signals much noisier in the low altitude

region. So the fact that the results for the solitary wave shapes are not as strongly unipolar for

the ion solitary waves is probably more a function of the plasma conditions in the region they

were observed than of the ion solitary waves themselves.
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Figure 7.15: This figure shows the ratio of electron cyclotron frequency to the plasma frequency

(which is roughly equal to the Debye length divided by the electron gyroradius) versus the ratio

of the perpendicular to the parallel electric field. The black dots are for individual solitary

waves. The red markers are for the same data separated into bins by the frequency ratio. The

medians of the data are plotted with the error bars equal to the limits of the measurements

within a bin. The green plotted line shows Equation 7.1 which is a theoretical prediction for

this plot. This plot is for all electron solitary waves observed in this study.
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Figure 7.16: This figure shows the polarity classification for the perpendicular electric field

signals of the low altitude ion solitary waves in study. The top panel shows the results for the

magnitude of the perpendicular electric field, while the bottom panel shows results for the angle

of the signal in the perpendicular plane. The classifications of the perpendicular signal are flat,

unipolar, or bipolar for signals that had shapes that could be fitted, or unclassified for signals

that did not meet any of the above classifications.
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It is also interesting to note that within both the ion and electron solitary wave groups the

results for the shapes of the magnitude and the angle shapes of the signals were similar. So not

only does the magnitude of the perpendicular solitary wave signal change in a unipolar fashion,

but the rotation of the angle of the electric field in the perpendicular plane is unipolar as well.

There are some slight differences in the results for the angle and magnitude. In particular, the

angle results have more signals classified as “flat” and fewer “unclassified” signals than the

angle results for both electron and ion solitary waves.

7.4 Conclusions

While solitary waves have been observed by a variety of spacecraft for over twenty years, the

Polar spacecraft, due to its instruments and orbit, leads to unique opportunities for studying

solitary waves. Polar’s fully three dimensional EFI is well suited to detecting and timing soli-

tary waves. The precession of Polar’s orbit leads to opportunities to observe solitary waves in

many regions of the magnetosphere. A survey analyzing all of EFI’s high-time resolution bursts

from 1997 was performed to take advantage of Polar’s abilities to observe solitary waves.

Analyzing the spatial distribution of the solitary waves in this survey is complicated by the

method by which EFI bursts are chosen. In order to detect the most interesting electric fields

in different regions of the magnetosphere, Polar’s orbit is divided into three regions and the

time period with the largest amplitude electric fields for each region are saved for each orbit.

A very non-uniform distribution of EFI bursts results, though within the bursts a fairly uniform

fraction of the bursts have solitary waves. The most apparent asymmetry in the distribution

of bursts with solitary waves is that low altitude bursts were twice as likely to include solitary

waves as high altitude bursts, though differences in how the solitary wave selection criteria

affect high and low altitudes might explain why a smaller fraction of high altitude bursts have

solitary waves.

Statistics of the solitary waves in the study were divided into high and low altitude and into
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Figure 7.17: This figure shows the polarity classification for the perpendicular electric field

signals of the low altitude ion solitary waves in study. The top panel shows the results for the

magnitude of the perpendicular electric field, while the bottom panel shows results for the angle

of the signal in the perpendicular plane. The classifications of the perpendicular signal are flat,

unipolar, or bipolar for signals that had shapes that could be fitted, or unclassified for signals

that did not meet any of the above classifications.
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electron and ion solitary waves. Thirty solitary waves were classified as being high altitude ion

solitary waves, which have not been observed previously. Upon closer examination, the validity

of either the classification of these events as solitary waves or the classification of the solitary

waves as ion solitary waves was called into question. After this review, 6 solitary waves were

left as strong candidates, though further review of the particle data is needed to be certain these

are high altitude ion solitary waves.

Statistical results on characteristics of the solitary waves were reported for the low altitude

ion and high altitude electron solitary waves observed in this study. The speeds of the low alti-

tude ion solitary waves averaged roughly 300 km s−1 and of the high altitude electron solitary

waves were on the order of 1000s of km s−1. These results agreed with previous observa-

tions. The potential amplitude of both ion and electron solitary waves were proportional to the

solitary wave parallel scale size, though there was much more scatter in the electron solitary

wave results. Proportionality between the potential amplitude and scale size supports the BGK

phase space theories of solitary waves. The potential difference across the ion solitary waves

supported the notion that the ion solitary waves make a small contribution to supporting the

potential drop along auroral field lines.

The distributions of the scale size parallel to the magnetic field of the solitary waves were

very similar for the electron and ion solitary waves, with typical values being about 15 λD for

the electron solitary waves and about 22 λD for the electron solitary waves (roughly 4 km for

each). These results matched previous parallel sizes for ion solitary waves and Polar observa-

tions of electron solitary waves, but were somewhat larger than FAST results for low altitude

electron solitary waves. Since the scale sizes perpendicular to the magnetic field cannot be

observed directly, two different methods of probing the perpendicular structure of the solitary

waves were discussed. The shape of the perpendicular electric field signatures for the majority

of both the electron and ion solitary waves were found to be unipolar as was expected. Also,

the ratio of the parallel to perpendicular electric field, which is expected to be proportional to

the ratio of the perpendicular to parallel scale size, was found to match the theoretical relation
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for the electron solitary waves.
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Chapter 8

Conclusions

The work presented here deals with the analysis of linear ion acoustic waves in the auroral

zone, as well as simulations of ion solitary waves and Polar observations of ion and electron

solitary waves.

8.1 Ion Acoustic Waves

Study of dispersion relations and the related information that dispersion relations provide is

an important method for understanding waves observed in the magnetosphere. In the cold

approximation of the dispersion relation, the temperature of the plasma particles is assumed to

be 0. Because they are relatively easy to solve analytically, cold dispersion relations are useful

for providing insight into basic plasma modes. They provide a good starting point for the study

of linear plasma waves, but in many cases more detailed analysis requires that the full kinetic

dispersion relation must be solved. In most cases, the kinetic dispersion relation must be solved

numerically.

The comparison of cold and kinetic dispersion relations is here applied to FAST spacecraft

observations of cyclotron waves in auroral zones. Waves with frequencies just above multiples

of the ion cyclotron frequency were previously typically classified as EIC waves, since there
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were often no observations of magnetic components of these waves and because the obser-

vations were consistent with the EIC dispersion relation. Recent FAST observations of these

waves show that there are sometimes magnetic components and theoretical work on these waves

suggest that their mode is an electromagnetic generalization of EIC waves. The dispersion rela-

tion results presented here show that the cold dispersion relation is not sufficient to study these

generalized EIC waves, since the ratio of electric to magnetic field does not match the observa-

tions. On the other hand, kinetic dispersion relation results do match the FAST observations as

well as the theory for generalized EIC waves.

8.2 Solitary Waves

Magnetospheric solitary waves, which are nonlinear structures most often observed in electric

field measurements, have been observed throughout the magnetosphere by a variety of space-

craft. In this work, statistical study of Polar observations of electron and ion solitary waves is

compared to simulations of ion solitary waves and previous results.

While solitary waves have been observed by a variety of spacecraft for over twenty years,

the Polar spacecraft, due to its instruments and orbit, leads to unique opportunities for studying

solitary waves. Polar’s fully three-dimensional EFI is well suited to detecting and timing soli-

tary waves. The precession of Polar’s orbit leads to opportunities to observe solitary waves in

many regions of the magnetosphere. A statistical survey analyzing all of EFI’s high-time reso-

lution bursts from 1997 was performed to take advantage of Polar’s abilities to observe solitary

waves.

Analyzing the spatial distribution of the solitary waves in this survey is complicated by the

method by which EFI bursts are chosen. Polar’s orbit is divided into three regions and the time

period with the largest amplitude electric fields for each region is saved for each orbit. A very

non-uniform distribution of EFI bursts results, though within the bursts a fairly uniform fraction

of the bursts have solitary waves. Roughly 13% of the high altitude bursts and 24% of the low
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altitude burst contained solitary waves. The most apparent asymmetry in the distribution of

bursts with solitary waves is that low altitude bursts were twice as likely to include solitary

waves as high altitude bursts, though differences in how the solitary wave selection criteria

affect high and low altitudes might explain why a smaller fraction of high altitude bursts have

solitary waves.

Statistics of the solitary waves in the study are divided into high and low altitude and into

electron and ion solitary waves. Thirty solitary waves are classified as high altitude ion solitary

waves, which have not been observed previously. Upon closer examination, the validity of

either the classification of these events as solitary waves or the classification of the solitary

waves as ion solitary waves was called into question. After this review, six solitary waves were

left as strong candidates, though further review of the particle is needed to be certain these are

high altitude ion solitary waves.

8.2.1 Ion Solitary Waves

In this analysis, the low altitude ion solitary wave results from the statistical study were com-

pared to the 2.5D electrostatic PIC simulation results. For both simulations and observations,

the solitary wave speeds fall between the speeds of the hydrogen and oxygen beams, as would

be expected if the two-stream instability is involved in generating the ion solitary waves. Ion

cyclotron waves, which may be generated due to the two-stream instability, are also present

before the solitary waves form in the simulations and are often seen in the observations as well.

These ion cyclotron waves would be expected if the solitary waves are caused by the two-stream

instability. The mechanism for generation of solitary waves from ion cyclotron waves in not

completely worked out.

The relationship between potential amplitude and scale size is a strong test of the theories

concerning ion solitary waves, since the ion acoustic soliton theory predicts that potential am-

plitude and scale size are inversely proportional, while the BGK phase space hole explanation

for solitary waves predicts that potential amplitude and scale size will be directly proportional.
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The simulation and statistical survey results both showed the potential amplitude being directly

proportional to the parallel scale size of the ion solitary waves.

The perpendicular scale size of the ion solitary waves leads to another test of the ion acoustic

soliton theory, which predicts the perpendicular scale size should be substantially larger than

than the parallel scale size, but not for the BGK phase space explanation, which makes no

definite prediction regarding the perpendicular scale size. The perpendicular sizes of the ion

solitary waves were somewhat smaller than the parallel scale sizes in the simulation results. In

the observations, the perpendicular size cannot be directly measured, so the ratio of the parallel

electric field to the perpendicular electric field is used. The results from this ratio also suggest

that perpendicular scale size of the ion solitary waves is smaller the parallel scale size. So this

test also goes against the ion acoustic soliton theory.

Overall, these simulation and observational results suggest that the BGK phase space hole

theory is a better explanation of ion solitary waves than the ion acoustic soliton theory. In par-

ticular, the ion two-stream instability may function as the generation mechanism for ion solitary

waves, since the BGK phase space hole theory does not include a generation mechanism. The

two-stream instabilities role as a generation mechanism is supported by the observations of ion

cyclotron waves, both in simulations and in space, when the ion solitary waves are present,

which theoretical results of the two-stream instability predict. More theoretical exploration of

a two-stream/BGK phase space hole explanation of ion solitary waves is needed to be certain

that this theory is correct.

8.2.2 Electron Solitary Waves

The statistical survey results for the electron solitary waves were generally in agreement with

previous observations and with these structures being BGK phase space holes. The high al-

titude electron solitary waves speeds are on the order of thousands of km s−1. The potential

amplitude is proportional to the solitary wave parallel scale size, though there was a significant

amount of scatter. The typical scale size parallel to the magnetic field was about 15 λD (4 km).
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These results were somewhat larger than previous FAST results for low altitude electron soli-

tary waves, but agreed with previous Polar results. Since the scale sizes perpendicular to the

magnetic field cannot be observed directly, two different methods of probing the perpendicular

structure of the solitary waves were discussed. The shape of the perpendicular electric field

signatures for the majority of the electron solitary waves are unipolar as was expected. Also,

the ratio of the parallel to perpendicular electric field, which is expected to be proportional to

the ratio of the perpendicular to parallel scale size, was found to be consistent with a theoretical

prediction of this relationship.

8.3 Future Work

Many open questions exist concerning solitary waves and their importance in the magneto-

spheric dynamics. This work suggests several areas that might be beneficial to explore in order

to better understand solitary waves.

The first is further exploration of a theory combining the two-stream instability and BGK

phase space holes to explain ion solitary waves, as was mentioned above. In particular, the

theory laid here does not explain how ion cyclotron waves can form quasi-stable BGK phase

space holes. Particularly troubling is explaining how obliquely propagating ion cyclotron waves

transform into parallel propagating solitary waves. It is possible that the ion cyclotron waves

are being converted to being converted to parallel propagating ion acoustic waves as an inter-

mediate step before the solitary waves form, but this needs to be examined more closely.

For simulations, the obvious next step is to perform a statistical simulation study that is

analogous to the Polar observation study presented here. A study of this type would bolster the

simulation results, which at this point are based on study of relatively few individual solitary

waves for each type of simulation run. Also, more simulations should be done with variations

of the simulation parameters such as the mass ratio and the simulation box length should be

performed in order to continue to search for differences in results.
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For observations, further statistical studies including additional years of data would be in-

formative, since due to the precession of Polar’s orbit the more recent time periods sample other

regions of the magnetosphere. Further study of this sort could show whether the characteristics

of solitary waves in the cusp and the magnetopause are similar to those seen in the plasma sheet

boundary layer. Also, further work should be done to confirm the existence of high-altitude ion

solitary waves as presented here.
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