Physical Constants

$$
\begin{aligned}
& \sigma=5.6705 \times 10^{-8} \mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-4} \\
& R=8.3145 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol}) \\
& N_{A}=6.0221 \times 10^{23} \\
& k_{B}=1.3807 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& 1 \mathrm{~atm}=1.0133 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Properties of $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& L_{V}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg} \\
& c_{w}=4186 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
& L_{f}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg} \\
& c_{i}=2090 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
& \rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

1. Consider the following cycle starting with $1 \mathrm{~m}^{3}$ of a monoatomic ideal gas at a pressure of 1 atm and a temperature of 300 K .
(a) The volume is adiabatically compressed until the temperature reaches 600 K .
(b) The volume is then isothermally expanded until the pressure reaches 1 atm .
(c) In a constant-pressure (a.k.a., isobaric) process, the volume is returned to $1 \mathrm{~m}^{3}$.

On the below graph, accurately plot and label each leg of this cycle. This will require calculating various $p V T$ values at the end of some cycles. Fill in the below table giving the sign $(+,-, 0)$ of the quantity for each leg of the cycle.

path:	a	b	c
ΔT			
ΔU			
Q			
W			
ΔS			

2. A hose with a normal diameter of 2 cm carries water at atmospheric pressure moving at $25 \mathrm{~m} / \mathrm{s}$. At one spot the hose balloons out to a diameter of 10 cm . What is the gauge pressure inside the enlarged region of the hose?

3. You want to cool 250 g of water (initially at room temperature: $22^{\circ} \mathrm{C}$) to $5^{\circ} \mathrm{C}$. What mass of ice (fresh from the freezer at $-10^{\circ} \mathrm{C}$) is required to exactly achieve this goal?
4. In an experiment very similar to Lab 8, a beaker of mercury is placed on a balance and then tared (zeroed). A cube of aluminum, 2 cm on a side, is placed on the mercury; it floats. The balance reads 22 g . The cube is then submerged (pushed under) and the balance reads 108 g . (A) What is the density of the aluminum? (B) What is the density of mercury?

5. A Carnot refrigerator is used to freeze 1000 g of water at $0^{\circ} \mathrm{C}$ by discharging heat into a room that acts as a heat reservoir at a temperature of $27^{\circ} \mathrm{C}$. What is the total amount of heat discharged into the room during this process?
