

Content Outline for Physical Sciences Section of the MCAT

GENERAL CHEMISTRY

ELECTRONIC STRUCTURE AND PERIODIC TABLE

A. Electronic Structure

- 1. Orbital structure of hydrogen atom, principal quantum number *n*, number of electrons per orbital
- 2. Ground state, excited states
- 3. Absorption and emission spectra
- 4. Quantum numbers *l*, *m*, *s*, and number of electrons per orbital
- 5. Common names and geometric shapes for orbitals s, p, d
- 6. Conventional notation for electronic structure
- 7. Bohr atom
- 8. Effective nuclear charge

B. The Periodic Table: Classification of Elements into Groups by Electronic Structure; Physical and Chemical Properties of Elements

- 1. Alkali metals
- 2. Alkaline earth metals
- 3. Halogens
- 4. Noble gases
- 5. Transition metals
- 6. Representative elements
- 7. Metals and nonmetals
- 8. Oxygen group

C. The Periodic Table: Variations of Chemical Properties with Group and Row

- 1. Electronic structure
 - a. representative elements
 - b. noble gases
 - c. transition metals
- 2. Valence electrons
- 3. First and second ionization energies
 - a. definition
 - b. prediction from electronic structure for elements in different groups or rows
- 4. Electron affinity
 - a. definition
 - b. variations with group and row
- 5. Electronegativity
 - a. definition
 - b. comparative values for some representative elements and important groups
- 6. Electron shells and the sizes of atoms

BONDING

A. The Ionic Bond (Electrostatic Forces Between Ions)

- 1. Electrostatic energy $\propto q_1 q_2/r$
- 2. Electrostatic energy \propto lattice energy
- 3. Electrostatic force $\propto q_1 q_2/r^2$

B. The Covalent Bond

- 1. Sigma and pi bonds
 - a. hybrid orbitals $(sp^3, sp^2, sp, and respective geometries)$
 - b. valence shell electron-pair repulsion (VSEPR) theory, predictions of shapes of molecules (e.g., NH₃, H₂O, CO₂)
- 2. Lewis electron dot formulas
 - a. resonance structures
 - b. formal charge
 - c. Lewis acids and bases
- 3. Partial ionic character
 - a. role of electronegativity in determining charge distribution
 - b. dipole moment

PHASES AND PHASE EQUILIBRIA

A. Gas Phase

- 1. Absolute temperature, K
- 2. Pressure, simple mercury barometer
- 3. Molar volume at 0° C and 1 atm = 22.4 L/mol
- 4. Ideal gas
 - a. definition
 - b. ideal gas law (PV = nRT)
 - i. Boyle's law
 - ii. Charles's law
 - iii. Avogadro's law
- 4. Kinetic theory of gases
- 5. Deviation of real-gas behavior from ideal gas law
 - a. qualitative
 - b. quantitative (van der Waals equation)
- 6. Partial pressure, mole fraction
- 7. Dalton's law relating partial pressure to composition

B. Intermolecular Forces

- 1. Hydrogen bonding
- 2. Dipole interactions
- 3. London dispersion forces

C. Phase Equilibria

- 1. Phase changes, phase diagrams
- 2. Freezing point, melting point, boiling point, condensation point
- 3. Molality
- 4. Colligative properties
 - a. vapor pressure lowering (Raoult's law)
 - b. boiling point elevation ($\Delta T_b = K_b m$)
 - c. freezing point depression ($\Delta T_f = K_f m$)
 - d. osmotic pressure
- 5. Colloids
- 6. Henry's law

STOICHIOMETRY

- 1. Molecular weight
- 2. Empirical formula versus molecular formula
- 3. Metric units commonly used in the context of chemistry
- 4. Description of composition by percent mass
- 5. Mole concept, Avogadro's number
- 6. Definition of density
- 7. Oxidation number
 - a. common oxidizing and reducing agents
 - b. disproportionation reactions
 - c. redox titration
- 8. Description of reactions by chemical equations
 - a. conventions for writing chemical equations
 - b. balancing equations including redox equations
 - c. limiting reactants
 - d. theoretical yields

THERMODYNAMICS AND THERMOCHEMISTRY

A. Energy Changes in Chemical Reactions: Thermochemistry

- 1. Thermodynamic system, state function
- 2. Endothermic and exothermic reactions
 - a. enthalpy H, standard heats of reaction and formation
 - b. Hess's law of heat summation
- 3. Bond dissociation energy as related to heats of formation
- 4. Measurement of heat changes (calorimetry), heat capacity, specific heat capacity (specific heat capacity of water = $4.184 \text{ J/g} \cdot \text{K}$)
- 5. Entropy as a measure of "disorder," relative entropy for gas, liquid, and crystal states
- 6. Free energy G
- 7. Spontaneous reactions and ΔG°

B. Thermodynamics

- 1. Zeroth law (concept of temperature)
- 2. First law ($\Delta E = q + w$, conservation of energy)
- 3. Equivalence of mechanical, chemical, electrical, and thermal energy units
- 4. Second law (concept of entropy)
- 5. Temperature scales, conversions
- 6. Heat transfer (conduction, convection, radiation)
- 7. Heat of fusion, heat of vaporization
- 8. *PV* diagram (work done = area under or enclosed by curve)

RATE PROCESSES IN CHEMICAL REACTIONS: KINETICS AND EQUILIBRIUM

- 1. Reaction rates
- 2. Rate law, dependence of reaction rate on concentrations of reactants
 - a. rate constant
 - b. reaction order
- 3. Rate-determining step
- 4. Dependence of reaction rate on temperature
 - a. activation energy
 - i. activated complex or transition state
 - ii. interpretation of energy profiles showing energies of reactants and products, activation energy, ΔH for the reaction
 - b. Arrhenius equation
- 5. Kinetic control versus thermodynamic control of a reaction
- 6. Catalysts, enzyme catalysis
- 7. Equilibrium in reversible chemical reactions
 - a. law of mass action
 - b. the equilibrium constant
 - c. application of Le Châtelier's principle
- 8. Relationship of the equilibrium constant and ΔG°

SOLUTION CHEMISTRY

A. Ions in Solution

- 1. Anion, cation (common names, formulas, and charges for familiar ions; e.g., NH_4^+ , ammonium; PO_4^{3-} , phosphate; SO_4^{2-} , sulfate)
- 2. Hydration, the hydronium ion

B. Solubility

- 1. Units of concentration (e.g.,molarity)
- 2. Solubility product constant, the equilibrium expression
- 3. Common-ion effect, its use in laboratory separations
- 4. Complex ion formation
- 5. Complex ions and solubility
- 6. Solubility and pH

ACIDS AND BASES

A. Acid–Base Equilibria

- 1. Brønsted-Lowry definition of acids and bases
- 2. Ionization of water
 - a. $K_{\rm w}$, its approximate value ($K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-] = 10^{-14}$ at 25°C)
 - b. pH definition, pH of pure water
- 3. Conjugate acids and bases
- 4. Strong acids and bases (common examples; e.g., nitric, sulfuric)
- 5. Weak acids and bases (common examples; e.g., acetic, benzoic)
 - a. dissociation of weak acids and bases with or without added salt
 - b. hydrolysis of salts of weak acids or bases
 - c. calculation of pH of solutions of weak acids or bases
- 6. Equilibrium constants K_a and K_b (p K_a and p K_b)
- 7. Buffers
 - a. definition, concepts (common buffer systems)
 - b. influence on titration curves

B. Titration

- 1. Indicators
- 2. Neutralization
- 3. Interpretation of titration curves

ELECTROCHEMISTRY

- 1. Electrolytic cell
 - a. electrolysis
 - b. anode, cathode
 - c. electrolytes
 - d. Faraday's law relating amount of elements deposited (or gas liberated) at an electrode to current
 - e. electron flow, oxidation and reduction at the electrodes
- 2. Galvanic (voltaic) cell
 - a. half-reactions
 - b. reduction potentials, cell potential
 - c. direction of electron flow

PHYSICS

TRANSLATIONAL MOTION

- 1. Dimensions (length or distance, time)
- 2. Vectors, components
- 3. Vector addition
- 4. Speed, velocity (average and instantaneous)
- 5. Acceleration
- 6. Freely falling bodies

FORCE AND MOTION, GRAVITATION

- 1. Center of mass
- 2. Newton's first law (inertia)
- 3. Newton's second law (F = ma)
- 4. Newton's third law (forces equal and opposite)
- 5. Concept of a field
- 6. Law of gravitation ($F = -Gm_1m_2/r^2$)
- 7. Uniform circular motion
- 8. Centripetal force ($F = -mv^2/r$)
- 9. Weight
- 10. Friction (static and kinetic)
- 11. Motion on an inclined plane
- 12. Analysis of pulley systems
- 13. Force

EQUILIBRIUM AND MOMENTUM

A. Equilibrium

- 1. Concept of force, units
- 2. Translational equilibrium ($\sum F_i = 0$)
- 3. Rotational equilibrium ($\sum \tau_i = 0$)
- 4. Analysis of forces acting on an object
- 5. Newton's first law (inertia)
- 6. Torques, lever arms
- 7. Weightlessness

B. Momentum

- 1. Momentum = mv
- 2. Impulse = Ft
- 3. Conservation of linear momentum
- 4. Elastic collisions
- 5. Inelastic collisions

WORK AND ENERGY

A. Work

- 1. Derived units, sign conventions
- 2. Path independence of work done in gravitational field
- 3. Mechanical advantage
- 4. Work–energy theorem
- 5. Power

B. Energy

- 1. Kinetic energy (KE = $mv^2/2$, units)
- 2. Potential energy
 - a. gravitational, local (PE = mgh)
 - b. spring (PE = $kx^2/2$)
 - c. gravitational, general (PE = -GmM/r)
- 3. Conservation of energy
- 4. Conservative forces
- 5. Power, units

WAVES AND PERIODIC MOTION

A. Periodic Motion

- 1. Amplitude, period, frequency
- 2. Phase
- 3. Hooke's law (F = -kx)
- 4. Simple harmonic motion, displacement as a sinusoidal function of time
- 5. Motion of a pendulum
- 6. General periodic motion (velocity, amplitude)

B. Wave Characteristics

- 1. Transverse and longitudinal waves
- 2. Wavelength, frequency, wave speed
- 3. Amplitude and intensity
- 4. Superposition of waves, interference, wave addition
- 5. Resonance
- 6. Standing waves (nodes, antinodes)
- 7. Beat frequencies
- 8. Refraction and general nature of diffraction

SOUND

- 1. Production of sound
- 2. Relative speed of sound in solids, liquids, and gases
- 3. Intensity of sound (decibel units, log scale)
- 4. Attenuation

- 5. Doppler effect (moving sound source or observer, reflection of sound from a moving object)
- 6. Pitch
- 7. Resonance in pipes and strings
- 8. Harmonics
- 9. Ultrasound

FLUIDS AND SOLIDS

A. Fluids

- 1. Density, specific gravity
- 2. Archimedes' principle (buoyancy)
- 3. Hydrostatic pressure
 - a. Pascal's law
 - b. pressure versus depth ($P = \rho gh$)
- 4. Poiseuille flow (viscosity)
- 5. Continuity equation (Av = constant)
- 6. Concept of turbulence at high velocities
- 7. Surface tension
- 8. Bernoulli's equation

B. Solids

- 1. Density
- 2. Elastic properties (elementary properties)
- 3. Elastic limit
- 4. Thermal expansion coefficient
- 5. Shear
- 6. Compression

ELECTROSTATICS AND ELECTROMAGNETISM

A. Electrostatics

- 1. Charges, conductors, charge conservation
- 2. Insulators
- 3. Coulomb's law ($F = kq_1q_2/r^2$, sign conventions)
- 4. Electric field
 - a. field lines
 - b. field due to charge distribution
- 5. Potential difference, absolute potential at point in space
- 6. Equipotential lines
- 7. Electric dipole
 - a. definition of dipole
 - b. behavior in electric field
 - c. potential due to dipole

- 8. Electrostatic induction
- 9. Gauss's law

B. Magnetism

- 1. Definition of the magnetic field **B**
- 2. Existence and direction of force on charge moving in magnetic field

C. Electromagnetic Radiation (Light)

- 1. Properties of electromagnetic radiation (general properties only)
 - a. radiation velocity equals constant c in vacuo
 - b. radiation consists of oscillating electric and magnetic fields that are mutually perpendicular to each other and to the propagation direction
- 2. Classification of electromagnetic spectrum (radio, infrared, UV, X-rays, etc.)

ELECTRONIC CIRCUIT ELEMENTS

A. Circuit Elements

- 1. Current ($I = \Delta Q / \Delta t$, sign conventions, units)
- 2. Battery, electromotive force, voltage
- 3. Terminal potential, internal resistance of battery
- 4. Resistance
 - a. Ohm's law (I = V/R)
 - b. resistors in series
 - c. resistors in parallel
 - d. resistivity ($\rho = RA/L$)
- 5. Capacitance
 - a. concept of parallel-plate capacitor
 - b. energy of charged capacitor
 - c. capacitors in series
 - d. capacitors in parallel
 - e. dielectrics
- 6. Discharge of a capacitor through a resistor
- 7. Conductivity theory

B. Circuits

1. Power in circuits (P = VI, $P = I^2 R$)

C. Alternating Currents and Reactive Circuits

- 1. Root-mean-square current
- 2. Root-mean-square voltage

LIGHT AND GEOMETRICAL OPTICS

A. Light (Electromagnetic Radiation)

1. Concept of interference, Young's double-slit experiment

- 2. Thin films, diffraction grating, single-slit diffraction
- 3. Other diffraction phenomena, X-ray diffraction
- 4. Polarization of light
- 5. Doppler effect (moving light source or observer)
- 6. Visual spectrum, color
 - a. energy
 - b. lasers

B. Geometrical Optics

- 1. Reflection from plane surface (angle of incidence equals angle of reflection)
- 2. Refraction, refractive index *n*, Snell's law $(n_1 \sin \theta_1 = n_2 \sin \theta_2)$
- 3. Dispersion (change of index of refraction with wavelength)
- 4. Conditions for total internal reflection
- 5. Spherical mirrors
 - a. mirror curvature, radius, focal length
 - b. use of formula (1/p) + (1/q) = 1/f with sign conventions
 - c. real and virtual images
- 6. Thin lenses
 - a. converging and diverging lenses, focal length
 - b. use of formula (1/p) + (1/q) = 1/f with sign conventions
 - c. real and virtual images
 - d. lens strength, diopters
 - e. lens aberration
- 7. Combination of lenses
- 8. Ray tracing
- 9. Optical instruments

ATOMIC AND NUCLEAR STRUCTURE

A. Atomic Structure and Spectra

- 1. Emission spectrum of hydrogen (Bohr model)
- 2. Atomic energy levels
 - a. quantized energy levels for electrons
 - b. calculation of energy emitted or absorbed when an electron changes energy levels

B. Atomic Nucleus

- 1. Atomic number, atomic weight
- 2. Neutrons, protons, isotopes
- 3. Nuclear forces
- 4. Radioactive decay (α , β , γ , half-life, stability, exponential decay, semilog plots)
- 5. General nature of fission
- 6. General nature of fusion
- 7. Mass deficit, energy liberated, binding energy