1. One end of a 0.75 m long string is fixed, and the other end is attached to a 1.5 kg stone to form a pendulum. The pendulum is held at a 40° angle from vertical, then released. At the bottom of its swing, find
(a) the speed of the stone.
(b) the tension in the string.
2. A force $\mathbf{F}=8 \mathbf{i}+\mathbf{3 j} \mathbf{-} \mathbf{5 k}$ acts on a happy little butterfly, which undergoes a displacement $\mathbf{d}=\mathbf{5 i} \mathbf{+} \mathbf{2 j} \mathbf{- 3} \mathbf{k}$. What work was done on the butterfly by this force?
3. A 3 kg block sits on a $35^{\circ} \mathrm{hill}$, and the static friction coefficient of their surfaces is 0.2 . Another mass m is attached by a string as shown.
(a) What is the smallest mass m that can remain at rest?
(b) What is the largest mass m that can remain at rest?
4. A 2 kg stone placed on top of a vertical spring compresses the spring downward 6 cm . How far will it compress the spring if it is dropped from 5 cm above the spring?
5. A 20 kg mass is being pulled at constant speed by a rope at a 20° angle from horizontal. The coefficient of kinetic friction is 0.4 . What is the tension in the rope?
6. Suppose a 60 kg man steps off the back porch of his house. What is the resulting acceleration of the Earth, which has a mass of 6×10^{24} kg ?
7. A car of mass $2 m$ accelerates from speed $5 v$ to $6 v$, and then slows to a stop. What was the total work was done on the car?
8. Give two examples of noninertial reference frames.
9. How much work is done by a force $F=3 x^{4} \mathrm{~N}$ that moves an object from $x=0$ to $x=4$, where x is in meters?
10. A force of 4 N north, another force of 5 N east, and a third force of 7 N northeast cause a mass m to accelerate at $5 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass m ?
