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INTRODUCTION TO DIGITAL FILTERS

Analog and digital filters

In signal processing, the function of a filter is to remove unwanted parts of the signal, such as random noise, or
to extract useful parts of the signal, such as the components lying within a certain frequency range.

The following block diagram illustrates the basic idea.

There are two main kinds of filter, analog and digital. They are quite different in their physical makeup and in
how they work.

An analog filter uses analog electronic circuits made up from components such as resistors, capacitors and op
amps to produce the required filtering effect. Such filter circuits are widely used in such applications as noise
reduction, video signal enhancement, graphic equalisers in hi-fi systems, and many other areas.

There are well-established standard techniques for designing an analog filter circuit for a given requirement.
At all stages, the signal being filtered is an electrical voltage or current which is the direct analogue of the
physical quantity (e.g. a sound or video signal or transducer output) involved.

A digital filter uses a digital processor to perform numerical calculations on sampled values of the signal. The
processor may be a general-purpose computer such as a PC, or a specialised DSP (Digital Signal Processor)
chip.

The analog input signal must first be sampled and digitised using an ADC (analog to digital converter). The
resulting binary numbers, representing successive sampled values of the input signal, are transferred to the
processor, which carries out numerical calculations on them. These calculations typically involve multiplying
the input values by constants and adding the products together. If necessary, the results of these calculations,
which now represent sampled values of the filtered signal, are output through a DAC (digital to analog
converter) to convert the signal back to analog form.

Note that in a digital filter, the signal is represented by a sequence of numbers, rather than a voltage or current.

The following diagram shows the basic setup of such a system.
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Advantages of using digital filters

The following list gives some of the main advantages of digital over analog filters.

1. A digital filter is programmable, i.e. its operation is determined by a program stored in the processor's
memory. This means the digital filter can easily be changed without affecting the circuitry (hardware).
An analog filter can only be changed by redesigning the filter circuit.

2. Digital filters are easily designed, tested and implemented on a general-purpose computer or
workstation.

3. The characteristics of analog filter circuits (particularly those containing active components) are
subject to drift and are dependent on temperature. Digital filters do not suffer from these problems,
and so are extremely stable with respect both to time and temperature.

4. Unlike their analog counterparts, digital filters can handle low frequency signals accurately. As the
speed of DSP technology continues to increase, digital filters are being applied to high frequency
signals in the RF (radio frequency) domain, which in the past was the exclusive preserve of analog
technology.

5. Digital filters are very much more versatile in their ability to process signals in a variety of ways; this
includes the ability of some types of digital filter to adapt to changes in the characteristics of the
signal.

6. Fast DSP processors can handle complex combinations of filters in parallel or cascade (series),
making the hardware requirements relatively simple and compact in comparison with the equivalent
analog circuitry.

Operation of digital filters

In this section, we will develop the basic theory of the operation of digital filters. This is essential to an
understanding of how digital filters are designed and used.

Suppose the "raw" signal which is to be digitally filtered is in the form of a voltage waveform described by the
function

V x t= ( )
where t is time.

This signal is sampled at time intervals h (the sampling interval). The sampled value at time t = ih is

x x ihi = ( )
Thus the digital values transferred from the ADC to the processor can be represented by the sequence

x ,  x ,  x ,  x ,  ... 0 1 2 3

corresponding to the values of the signal waveform at

t =  0,  h, 2h, 3h, ...

and t = 0 is the instant at which sampling begins.
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At time t = nh (where n is some positive integer), the values available to the processor, stored in memory, are

x ,  x ,  x ,  x ,  ... x0 1 2 3 n

Note that the sampled values xn+1, xn+2 etc. are not available, as they haven't happened yet!

The digital output from the processor to the DAC consists of the sequence of values

y ,  y ,  y , y ,  ... y0 1 2 3 n

In general, the value of yn is calculated from the values x0, x1, x2, x3, ... , xn. The way in which the y's are
calculated from the x's determines the filtering action of the digital filter.

In the next section, we will look at some examples of simple digital filters.

Examples of simple digital filters

The following examples illustrate the essential features of digital filters.

1. Unity gain filter:

y  =  xn n

Each output value yn is exactly the same as the corresponding input value xn:

y x
y x
y x

etc

0 0

1 1

2 2

=
=
=

...

This is a trivial case in which the filter has no effect on the signal.

2. Simple gain filter:

y  =  Kxn n

where K = constant.

This simply applies a gain factor K to each input value.

K > 1 makes the filter an amplifier, while 0 < K < 1 makes it an attenuator. K < 0 corresponds to an
inverting amplifier. Example (1) above is simply the special case where K = 1.
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3. Pure delay filter:

y  =  xn n-1

The output value at time t = nh is simply the input at time t = (n-1)h, i.e. the signal is delayed by time
h:

y  =  x
y  =  x
y  =  x
y  =  x
... etc

0 -1

1 0

2 1

3 2

Note that as sampling is assumed to commence at t = 0, the input value x-1 at t = -h is undefined. It is
usual to take this (and any other values of x prior to t = 0) as zero.

4. Two-term difference filter:

y  =  x  -  xn n n-1

The output value at t = nh is equal to the difference between the current input xn and the previous
input xn-1:

y  =  x  -  x
y  =  x  -  x
y  =  x  -  x
y  =  x  -  x
... etc

0 0 -1

1 1 0

2 2 1

3 3 2

i.e. the output is the change in the input over the most recent sampling interval h. The effect of this
filter is similar to that of an analog differentiator circuit.
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5. Two-term average filter:

y  =  
x  +  x

2n
n n-1

The output is the average (arithmetic mean) of the current and previous input:

 

y  =  
x  +  x

2

y  =  
x  +  x

2

y  =  
x  +  x

2

y  =  
x  +  x

2
... etc

0
0 -1

1
1 0

2
2 1

3
3 2

This is a simple type of low pass filter as it tends to smooth out high-frequency variations in a signal.
(We will look at more effective low pass filter designs later).

6. Three-term average filter:

y  =  
x  +  x

3n
n n-1 + −xn 2

This is similar to the previous example, with the average being taken of the current and two previous
inputs:

  

y  =  
x  +  x  +  x

3

y  =  
x  +  x  +  x

3

y  =  
x  +  x  +  x

3

y  =  
x  +  x  +  x

3
 

0
0 -1 -2

1
1 0 -1

2
2 1 0

3
3 2 1

As before, x-1 and x-2 are taken to be zero.
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7. Central difference filter:

y  =  
x  -  x

2n
n n-2

This is similar in its effect to example (4). The output is equal to half the change in the input signal
over the previous two sampling intervals:

y  =  
x  -  x

2

y  =  
x  -  x

2

y  =  
x  -  x

2

y  =  
x  -  x

2
... etc

0
0 -2

1
1 -1

2
2

3
3 1

0

Order of a digital filter

The order of a digital filter is the number of previous inputs (stored in the processor's memory) used to
calculate the current output.

Thus:

1. Examples (1) and (2) above are zero-order filters, as the current output yn depends only on the current input
xn and not on any previous inputs.

2. Examples (3), (4) and (5) are all of first order, as one previous input (xn-1) is required to calculate yn. (Note
that the filter of example (3) is classed as first-order because it uses one previous input, even though the
current input is not used).

3. In examples (6) and (7), two previous inputs (xn-1 and xn-2) are needed, so these are second-order filters.

Filters may be of any order from zero upwards.

Digital filter coefficients

All of the digital filter examples given above can be written in the following general forms:

Zero order: y  =  a xn 0 n

First order: y  =  a x  +  a xn 0 n 1 n-1

Second order: y  =  a x  +  a x +  a xn 0 n 1 n-1 2 n-2

Similar expressions can be developed for filters of any order.
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The constants a0, a1, a2, ... appearing in these expressions are called the filter coefficients. It is the values of
these coefficients that determine the characteristics of a particular filter.

The following table gives the values of the coefficients of each of the filters given as examples above.

Example Order a0 a1 a2

1 0 1 - -

2 0 K - -

3 1 0 1 -

4 1 1 -1 -

5 1 1/2
1/2 -

6 2 1/3
1/3

1/3

7 2 1/2 0 -1/2

SAQ 1 For each of the following filters, state the order of the filter and identify the values of its
coefficients:

(a) y  =  2x  -  xn n n-1

(b) y  =  xn n-2

(c) y  =  x  -  2x  +  2x  +  xn n n-1 n-2 n-3

Recursive and non-recursive filters

For all the examples of digital filters discussed so far, the current output (yn) is calculated solely from the
current and previous input values (xn, xn-1, xn-2, ...). This type of filter is said to be non-recursive.

A recursive filter is one which in addition to input values also uses previous output values. These, like the
previous input values, are stored in the processor's memory.

The word recursive literally means "running back", and refers to the fact that previously-calculated output
values go back into the calculation of the latest output. The expression for a recursive filter therefore contains
not only terms involving the input values (xn, xn-1, xn-2, ...) but also terms in yn-1, yn-2, ...

From this explanation, it might seem as though recursive filters require more calculations to be performed,
since there are previous output terms in the filter expression as well as input terms. In fact, the reverse is
usually the case: to achieve a given frequency response characteristic using a recursive filter generally requires
a much lower order filter (and therefore fewer terms to be evaluated by the processor) than the equivalent non-
recursive filter. This will be demonstrated later.
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Note

Some people prefer an alternative terminology in which a non-recursive filter is known as
an FIR (or Finite Impulse Response) filter, and a recursive filter as an IIR (or Infinite
Impulse Response) filter.

These terms refer to the differing "impulse responses" of the two types of filter. The
impulse response of a digital filter is the output sequence from the filter when a unit
impulse is applied at its input. (A unit impulse is a very simple input sequence consisting
of a single value of 1 at time t = 0, followed by zeros at all subsequent sampling instants).

An FIR filter is one whose impulse response is of finite duration. An IIR filter is one
whose impulse response theoretically continues for ever because the recursive (previous
output) terms feed back energy into the filter input and keep it going. The term IIR is not
very accurate because the actual impulse responses of nearly all IIR filters reduce virtually
to zero in a finite time. Nevertheless, these two terms are widely used.

Example of a recursive filter

A simple example of a recursive digital filter is given by

y  =  x  +  yn n n-1

In other words, this filter determines the current output (yn) by adding the current input (xn) to the previous
output (yn-1):

y  =  x  +  y
y  =  x  +  y
y  =  x  +  y
y  =  x  +  y
... etc

0 0 -1

1 1 0

2 2 1

3 3 2

Note that y-1 (like x-1) is undefined, and is usually taken to be zero.

Let us consider the effect of this filter in more detail. If in each of the above expressions we substitute for yn-1

the value given by the previous expression, we get the following:

y  =  x  +  y
y  =  x  +  y
y  =  x  +  y
y  =  x  +  y
... etc

0 0 -1

1 1 0

2 2 1

3 3 2

=
= +
= + +
= + + +

x
x x
x x x
x x x x

0

1 0

2 1 0

3 2 1 0

Thus we can see that yn, the output at t = nh, is equal to the sum of the current input xn and all the previous
inputs. This filter therefore sums or integrates the input values, and so has a similar effect to an analog
integrator circuit.



9

This example demonstrates an important and useful feature of recursive filters: the economy with which the
output values are calculated, as compared with the equivalent non-recursive filter. In this example, each output
is determined simply by adding two numbers together. For instance, to calculate the output at time t = 10h, the
recursive filter uses the expression

y  =  x  +  y10 10 9

To achieve the same effect with a non-recursive filter (i.e. without using previous output values stored in
memory) would entail using the expression

y  =  x  +  x  +  x  +  x  +  x  +  x  +  x  +  x  +  x  +  x  +  x10 10 9 8 7 6 5 4 3 2 1 0

This would necessitate many more addition operations as well as the storage of many more values in memory.

Order of a recursive (IIR) digital filter

The order of a digital filter was defined earlier as the number of previous inputs which have to be stored in
order to generate a given output. This definition is appropriate for non-recursive (FIR) filters, which use only
the current and previous inputs to compute the current output. In the case of recursive filters, the definition can
be extended as follows:

The order of a recursive filter is the largest number of previous input or output values
required to compute the current output.

This definition can be regarded as being quite general: it applies both to FIR and IIR filters.

For example, the recursive filter discussed above, given by the expression

y  =  x  +  yn n n-1

is classed as being of first order, because it uses one previous output value (yn-1), even though no previous
inputs are required.

In practice, recursive filters usually require the same number of previous inputs and outputs. Thus, a first-order
recursive filter generally requires one previous input (xn-1) and one previous output (yn-1), while a second-order
recursive filter makes use of two previous inputs (xn-1 and xn-2) and two previous outputs (yn-1 and yn-2); and so
on, for higher orders.

Note that a recursive (IIR) filter must, by definition, be of at least first order; a zero-order recursive filter is an
impossibility. (Why?)
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SAQ 2 State the order of each of the following recursive filters:

(a)  y  =  2x  -  x  +  yn n n-1 n-1

(b)  y  =  x  -  x  -  2yn n-1 n-3 n-1

(c)  y  =  x  +  2x  +  x  -  2y  +  yn n n-1 n-2 n-1 n-2

Coefficients of recursive (IIR) digital filters

From the above discussion, we can see that a recursive filter is basically like a non-recursive filter, with the
addition of extra terms involving previous inputs (yn-1, yn-2 etc.).

A first-order recursive filter can be written in the general form

y  =  
(a x  +  a x  -  b y )

bn
0 n 1 n-1 1 n-1

0

Note the minus sign in front of the "recursive" term b1yn-1, and the factor (1/b0) applied to all the coefficients.
The reason for expressing the filter in this way is that it allows us to rewrite the expression in the following
symmetrical form:

b y  +  b y  =  a x  +  a x0 n 1 n-1 0 n 1 n-1

In the case of a second-order filter, the general form is

y
a x a x a x b y b y

bn
n n n n n=

+ + − −− − − −0 1 1 2 2 1 1 2 2

0

The alternative "symmetrical" form of this expression is

b y +  b y  +  b y  =  a x  +  a x  +  a x0 n 1 n-1 2 n-2 0 n 1 n-1 2 n-2

Note the convention that the coefficients of the inputs (the x's) are denoted by a's, while the coefficients of the
outputs (the y's) are denoted by b's.

SAQ 3 Identify the values of the filter coefficients for the first-order recursive filter

 y  =  x  +  yn n n-1

discussed earlier.

Repeat this for each of the filters in SAQ 2.
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The transfer function of a digital filter

In the last section, we used two different ways of expressing the action of a digital filter: a form giving the
output yn directly, and a "symmetrical" form with all the output terms on one side and all the input terms on
the other.

In this section, we introduce what is called the transfer function of a digital filter. This is obtained from the
symmetrical form of the filter expression, and it allows us to describe a filter by means of a convenient,
compact expression. We can also use the transfer function of a filter to work out its frequency response.

First of all, we must introduce the delay operator, denoted by the symbol z-1.

When applied to a sequence of digital values, this operator gives the previous value in the sequence. It
therefore in effect introduces a delay of one sampling interval.

Applying the operator z-1 to an input value (say xn) gives the previous input (xn-1):

z  x  =  x-1
n n-1

Suppose we have an input sequence
x  =   5
x  =  - 2
x  =   0
x  =   7
x  =  10

0

1

2

3

4

Then

z  x   =   x   =   5

z  x   =   x   =  - 2

z  x   =   x   =   0

-1
1 0

-1
2 1

-1
3 2

and so on. Note that z-1 x0 would be x-1, which is unknown (and usually taken to be zero, as we have already
seen).

Similarly, applying the z-1 operator to an output gives the previous output:

z  y =  y-1
n n-1

Applying the delay operator z-1 twice produces a delay of two sampling intervals:

z  (z  x ) =  z  x  =  x-1 -1
n

-1
n-1 n-2

We adopt the (fairly logical) convention
z  z  =  z-1 -1 -2
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i.e. the operator z-2 represents a delay of two sampling intervals:

z  x  =  x-2
n n-2

This notation can be extended to delays of three or more sampling intervals, the appropriate power of z-1 being
used.

Let us now use this notation in the description of a recursive digital filter. Consider, for example, a general
second-order filter, given in its symmetrical form by the expression

b y  +  b y  +  b y  =  a x  +  a x  +  a x0 n 1 n-1 2 n-2 0 n 1 n-1 2 n-2

We will make use of the following identities:
y  =  z  y

y  =  z  y

x  =  z  x

x  =  z  x

n-1
-1

n

n-2
-2

n

n-1
-1

n

n-2
-2

n

Substituting these expressions into the digital filter gives

(b  +  b z  +  b z ) y  =  (a  +  a z  +  a z ) x0 1
-1

2
-2

n 0 1
-1

2
-2

n

Rearranging this to give a direct relationship between the output and input for the filter, we get

y
x

 =  
a  +  a z  +  a z
b  +  b z  +  b z

n

n

0 1
-1

2
-2

0 1
-1

2
-2

This is the general form of the transfer function for a second-order recursive (IIR) filter.

For a first-order filter, the terms in z-2 are omitted. For filters of order higher than 2, further terms involving
higher powers of z-1 are added to both the numerator and denominator of the transfer function.

A non-recursive (FIR) filter has a simpler transfer function which does not contain any denominator terms.
The coefficient b0 is usually taken to be equal to 1, and all the other b coefficients are zero. The transfer
function of a second-order FIR filter can therefore be expressed in the general form

y
x

 =  a  +  a z  +  a zn

n
0 1

-1
2

-2
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For example, the three-term average filter, defined by the expression

y  =  
x  +  x  +  x

3n
n n-1 n-2

can be written using the z-1 operator notation as

y  =  
x  +  z x  +  z x

3
 =  

(1 +  z  +  z ) x
3

     

n
n

-1
n

-2
n

-1 -2
n

The transfer function for the filter is therefore
y
x

 =  
1 +  z  +  z

3
n

n

-1 -2

The general form of the transfer function for a first-order recursive filter can be written

y
x

 =  
a  +  a z
b  +  b z

n

n

0 1
-1

0 1
-1

Consider, for example, the simple first-order recursive filter

y  =  x  +  yn n n-1

which we discussed earlier. To derive the transfer function for this filter, we rewrite the filter expression using
the z-1 operator:

(1 -  z ) y  =  x-1
n n

Rearranging gives the filter transfer function as

y
x

 =  
1

1 -  z
n

n
-1

As a further example, consider the second-order IIR filter

y  =  x  +  2x  +  x  -  2y  +  yn n n-1 n-2 n-1 n-2

Collecting output terms on the left and input terms on the right to give the "symmetrical" form of the filter
expression, we get

y  +  2y  -  y  =  x  +  2x  +  xn n-1 n-2 n n-1 n-2

Expressing this in terms of the z-1 operator gives

(1 +  2z  -  z ) y  =  (1 +  2z  +  z ) x-1 -2
n

-1 -2
n

and so the transfer function is
y
x

 =  
1 +  2z +  z
1 +  2z  -  z

n

n

-1 -2

-1 -2
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SAQ 4 Derive the transfer functions of each of the filters in SAQ 2.

Tutorial question

A digital filter is described by the expression

y   =   2x  -  x  +  0.8yn n n-1 n-1

(a) State whether the filter is recursive or non-recursive. Justify your answer.

(b) State the order of the filter.

(c) Derive the filter transfer function.

(d) The following sequence of input values is applied to the filter.

x  =   5
x  =  16
x  =   8
x  =  - 3
x  =   0
x  =   2

0

1

2

3

4

5

Determine the output sequence for the filter, from y0 to y5.
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Answers to Self-Assessment Questions

SAQ 1

a) Order = 1:  a0 = 2, a1 = -1

b) Order = 2:  a0 = 0, a1 = 0, a2 = 1

c) Order = 3:  a0 = 1, a1 = -2, a2 = 2, a3 = 1

SAQ 2

a) Order = 1

b) Order = 3

c) Order = 2

SAQ 3
a0 = 1 a1 = 0

b0 = 1 b1= -1

For filters listed in SAQ 2:

a) a0 = 2   a1 = -1   b0 = 1   b1 = -1

b) a0 = 0   a1 = 1   a2 = 0   a3 = -1   b0 = 1   b1 = 2   b2 = 0   b3 = 0

c) a0 = 1   a1 = 2   a2 = 1   b0 = 1   b1 = 2   b2 = -1

SAQ 4

a) 
y
x

 =  
2 -  z
1 -  z

 n

n

-1

-1

b) 
y
x

 =  
z  -  z
1 +  2z

n

n

-1 -3

-1

c) 
y
x

 =  
1 +  2z  +  z
1 +  2z  -  z

n

n

-1 -2

-1 -2


