1. Answer the following questions on number systems. (Ref. HH 10.1.3)
(a) Convert the following decimal numbers to binary: 28, 100, and 341
(b) Convert the following sequence of decimal numbers to binary: $15,16,17,18,19$
(c) Convert the following binary numbers to decimal: 1101, 10101010, and 1111
(d) Convert the above binary numbers to octal.
(e) Convert the above binary numbers to hexadecimal
(f) Convert $365_{10}$ to BCD
(g) Convert the BCD number 0100,0001 to binary.
2. Without converting to decimal, directly add the following binary numbers. Then check your answers by converting each number to decimal.
(a) $111011+101110$
(b) $01011+110$
(c) $010101+01101$
3. Voltages $V_{A}$ and $V_{B}$ (plotted below left as functions of time) are used as inputs to simple gates. Graph the gate output as a function of time if the gate is:
(a) AND (i.e., $V_{A} \cdot V_{B}$ )
(b) OR (i.e., $V_{A}+V_{B}$ )

You have probably answered this question assuming positive-true (HH p. 413-4 +10.1.7) logic. Answer again assuming negative-true logic.



4. Consider the switch network shown above right. Deduce the Boolean expression for the condition that the circuit conducts current between $a$ and $b$. (A closed switch is to be consider true.)
5. Consider the below mess of gates:

(a) Convert the mess of gates into the equivalent boolean expression.
(b) Use boolean algebra to reduce your boolean expression.
(c) Express your reduced expression in gates.
(d) Re-draw the original circuit and label the logic level of every wire assuming $(A, B, C)=$ $(0,0,0)$.
6. The statement " $A$ or $B$ and $C$ " can be interpreted in two ways. Write unambiguous Boolean expressions for each interpretation and express the resulting expression in a circuit of simple gates.
7. Go to the Texas Instruments web site (www.ti.com) and find the data sheet for a 7400 (quad NAND gate). Print out the first page (which should show the pinouts for the various packages). Go to the Digi-Key web site (www. digikey.com) and find the part number and price for a 7400 in the 14 pin DIP package.
8. Consider the diode-logic circuit with inputs $A, B$ and $C$ shown below left.
(a) Suppose $C$ is brought low by connecting it to ground, while $A$ and $B$ unconnected. What is the output voltage?
(b) Suppose $C$ is brought low by connecting it to ground, while $A$ and $B$ remain connected to +5 V . What is the output voltage?
(c) Suppose both $B$ and $C$ are held low by connecting it to ground, while $A$ is connected to +5 V . What is the output voltage?
(d) What logic function is implemented by this circuit?
(e) Suppose $C$ is brought low by connecting it through a $1 \mathrm{k} \Omega$ resistor to ground, while $A$ and $B$ remain connected to +5 V . What is the output voltage?

9. Consider two possible designs for a push-button controlled logic level as diagrammed above right. In design A, a NO SPST push button (HH p. 58) is connected to +5 V via a resistor ('pull-up resistor'). In design B, a NO SPST push button is connected ground via a resistor ('pull-down resistor'). Assume that when High the switch output might have to source $1 \mu \mathrm{~A}$ of current and when Low it might have to sink 1 mA of current and that the resistors are $1 \mathrm{k} \Omega$. In design A: what will be the actual output voltage when the switch is closed and when open. Same question for design B. If the resistance of $R$ is reduced, the actual output voltages will be closer to the ideal. What problems result from making $R$ much smaller? Generally speaking which design is superior for TTL gates? Report why.
10. Design a majority-rule voting system for a committee of three members. Each member is provided with a yes/no switch; the output is true if and only if the vote passes. Your design should include both a circuit of simple gates implementing the function and the corresponding Boolean expressions.
11. (a) Show that $A+\bar{A} B=A+B$ using two of the following three methods: Venn Diagram, complete enumeration of all cases in a truth table, or by Boolean algebra.
(b) Show:

$$
\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C}+A B C=\overline{A \cdot \bar{B}}
$$

(c) Directly implement each side of this expression in gates. How many gates are saved by using the reduced form?
12. (a) Consider

$$
T=(A+B)(\bar{B}+A)
$$

Draw the gate circuit that follows directly from this statement.
(b) Assume $A=1$ and $B=0$. Directly on your circuit diagram, label the logic level of each wire.
(c) Reduce the Boolean expression for $T$. Show that your reduced expression in fact produces the same output as the full expression with the inputs $A=1$ and $B=0$.
13. Reduce the following expressions:
(a) $\bar{A} \cdot \overline{((B \cdot C)+B)} \cdot \bar{A}$
(b) $\bar{A} \bar{B}+(A+\bar{B})$
(c) $(A+A B)+\bar{A} B$
(d) $(\bar{A}+\bar{B})(A \cdot \bar{B})$
(e) $[(A B+A \bar{B})+A B]+\bar{A} B$
14. (a) Write the sum-of-products (minterm) expression for this truth table.
(b) Write the product-of-sums (maxterm) expression for this truth table.

| $A$ | $B$ | $C$ | $T$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

15. Consider the cross-NAND SR FF with $S, R$ inputs (plotted as a function of time) as shown below. Graph $Q$ (along with $R, S$ ) as functions of time. (The graphs for this and the following problems should be 'stacked', as in the below examples, so that the simultaneous behavior of all the signals can be assessed.) HH Fig. 10.49 is a active-low cross-NAND SR FF, but 'bubble pushing' has moved the invert to the inputs with AND $\rightarrow$ OR. Note: $S$ LOW $\Rightarrow Q$ HIGH.

16. Consider the level-triggered active-high cross-NAND SR FF (HH Fig. 10.54) with $S, R, C L K$ inputs (plotted as a function of time) as shown below. Graph $Q$ (along with $R, S, C L K$ ) as functions of time.

17. Consider the edge-triggered cross-NAND SR FF (action on high $S \& R$ ) with $S, R, C L K$ inputs (plotted as a function of time) as shown below. Assume $Q=1$ initially. Graph $Q$ (along with $R, S, C L K)$ as functions of time for:
(a) positive edge triggered SR FF
(b) negative edge triggered SR FF

18. Consider the edge-triggered JK FF (HH p. 731) with $J, K, C L K$ inputs (plotted as a function of time) as shown below. Assume that initially $Q=0$. Graph $Q$ (along with $J, K, C L K$ ) as functions of time for:
(a) positive edge triggered JK FF
(b) negative edge triggered JK FF

19. A new type of controlled flip-flop satisfying the below state table is required for a design. Show how you can make this FF from a JKFF an a few simple gates.

| $A$ | $B$ | $Q_{n+1}$ |
| :---: | :---: | :---: |
| 0 | 0 | $\bar{Q}_{n}$ |
| 1 | 0 | $Q_{n}$ |
| 0 | 1 | 0 |
| 1 | 1 | 1 |

20. For each of the following circuits, assume that initially $Q=0$ and then a series of clock pulses are applied to $C L K$. For each circuit plot $Q$ and $C L K$ as functions of time.

21. (a) A simple indicator of minimum overnight temperature is desired. Assume that three normally open SPST switches are available that close when the temperature falls below $10^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C}$, and $0^{\circ} \mathrm{C}$. (The switches open again when the temperature rises above the set point.) Design an instrument with three light indicators; each indicator lights and holds if the temperature falls below its set point. A reset button should be provided so that the instrument can be cleared after reading it the following morning. Assume that the indicator lights operate using the usual logic level voltages (HIGH=light on, LOW=light off).
(b) In a conventional mercury thermometer a column of mercury moves up or down responding to the current temperature. Design a instrument in which a column of lighted lights acts like the mercury column: additional lights lighting (lengthening the lighted column) as the temperature rises. Assume that 30 switches are available with set points in increments of $1^{\circ} \mathrm{C}$ (i.e., $0^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C}, \ldots, 29^{\circ} \mathrm{C}$ ).
22. A building has a turnstile for incoming people and another turnstile for people leaving the building. The output of a turnstile is generally HIGH but, when a person passes through it, a short ( $\sim 100 \mathrm{~ns}$ ) LOW pulse is produced. Show how, with a just a handful of extra gates, a 74191 can be used to display the number of people actually in the building. Note: the 74193 counter which exactly solves this problem: a counter with separate up and down clock inputs, but you are instead to use the '191 described used in Lab 3. The first thing you must do is combine the two turnstile outputs to make one clock-you may assume that the pulses are so short that they never overlap. Next you need to figure out how to control the '191's $\bar{U} / D$ pin.
23. A crossed-NAND SR FF has an active low Set pin $(S \rightarrow 0 \Rightarrow Q \rightarrow 1)$ and an active low Reset (clear) pin $(R \rightarrow 0 \Rightarrow Q \rightarrow 0)$. The setting and clearing action is immediate: there is no clock. A D FF has a Data pin $(D)$, the value of which is read and transferred to the output when the Load pin $(L)$ goes high. Consider the process of making a D FF from a SR FF and some additional gates. The Load and Data lines must somehow control the Set and Reset pins to make the SR FF act as desired.
(a) Begin by thinking what $S$ and $R$ need to be for all possible combinations of $D$ and $L$. This is best done by completing the truth tables:
$\left.\begin{array}{cc|c}D & L & S \\ \hline 0 & 0 & \\ 1 & 0 & \end{array} \begin{array}{cc|c}D & L & R \\ 0 & 1 & 0 \\ 0 & 0 & \\ 1 & 1 & \end{array} \begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right)$
(b) Write down the Boolean expression for each truth table.
(c) Draw the circuit required for $D$ and $L$ to drive $R$ and $S$.
24. A mod-3 counter (e.g., HH Fig. 10.67 p. 735 with output digits $B A$ ) and a mod-2 counter (e.g., a toggling FF with output digit $C$ ) are connected together as shown below. Graph the $C, B, A$ outputs for a square wave clock input. Show that $C$ is a symmetrical square wave with a frequency $1 / 6$ of the input frequency. Assume that both counters are synchronous, but with an output delay of 30 ns . What cycle of $C, B, A$ states is actually produced by this asynchronous connection?

25. An elevator services three floors of a hotel. There are three logical variables: $E_{1}, E_{2}, E_{3}$, which record the floor at which the elevator sits. $E_{i}=1$ if the elevator is on the $i^{t h}$ floor and is 0 otherwise. (For example, if the elevator is on the $2^{\text {nd }}$ floor, $E_{2}=1$ while $E_{1}=E_{3}=0$. Assume exactly one of the $E_{i}$ will be 1.) On each floor there is an elevator call button. The logical variables $C_{1}, C_{2}, C_{3}$ record unsatisfied requests for elevator service. $C_{i}=1$ if the elevator is requested on the $i^{\text {th }}$ and is 0 otherwise. (For example, if $C_{2}=0$ while $C_{1}=C_{3}=1$, the elevator is requested on the first and third floors.) In responding to call requests the elevator can go up (if up-motor control $U=1$ ) or down (if down-motor control $D=1$ ) or not move (if $U=0$ and $D=0)$. ( $U=1$ and $D=1$ should never occur.) Write a logical expression for $U$ as a function of inputs $E_{i}$ and $C_{i}$. Do the same for $D$. Your answer should represent rational elevator behavior; for example the elevator must answer the closest call request.
26. A simplified logic circuit for a 7490 Decade Counter is shown below. ('Simplified' in that clears and enables are not shown.) Note that \#4 is an active high clocked RSFF and that $J K$ inputs shown as disconnected are connected HIGH. JKFF \#1 is just toggling on CK A and is otherwise disconnected from the rest of the chip.
(a) Starting from 000, record the sequence of $D C B$ output states as $\mathbf{C K} \mathbf{B}$ is clocked. Are the changes in the $D C B$ outputs synchronous?
(b) Consider the circuit in which output $\mathbf{A}$ is connected to input $\mathbf{C K} \mathbf{B}$ and the chip is clocked by CK A. Starting from 0000, record the resulting sequence of $D C B A$ states.
(c) Consider the circuit in which output $\mathbf{D}$ is connected to input $\mathbf{C K} \mathbf{A}$ and the chip is clocked by CK B. Starting from 0000, record the resulting sequence of $D C B A$ states. Stack vertically the input CK B and the output D both versus a shared time. How does the frequency of $\mathbf{D}$ compare to the frequency of $\mathbf{C K} \mathbf{B}$ ?

27. Consider a 4-bit shift register with complementary outputs (e.g., both $A$ and $\bar{A}$ are available on output pins). The shift register is cleared and then clocked. Verify the following behavior:

- There are exactly eight states that the circuit cycles through. Record those eight states.
- Only one of the four outputs $A B C D$ changes per step.

Using this circuit construct a circuit with eight outputs such that exactly one
 of those outputs goes high for each state - a different output line for each different state. (I.e., make a decoder.) Hint: all that is required is eight two-input AND gates.
28. Three processes $A, B$, and $C$ are to be operated in sequence by a controller that you are to design in the problem. Each process will start and continue to run as long as it has a HIGH on its control input (e.g., $O N_{A}$ ); each process signals when it is complete with a brief HIGH on its process-complete output (e.g., Done $A$ ). Correspondingly the controller must have three control outputs (e.g., $G O_{A}$ ) and three process-complete inputs (e.g., Complete ${ }_{A}$ ). Additionally the controller has a Reset push button that immediately turns off any and all devices that might be on and a Start push button that starts the sequence of processes with $A$. Hint: one way to do this is with a shift register.
29. Consider the below circuit using pair of JKFF. Directly on this sheet appropriately (i.e., correctly given the circuit diagram) label each JKFF "negative edge triggered" or "positive edge triggered". At the start of this clock sequence $Q_{1}$ and $Q_{2}$ are both HIGH; controls $J_{1}$ and $K_{1}$ are changed as shown in the below plot stack and controls $J_{2}$ and $K_{2}$ are determined by the circuit. Directly on the below stack of output traces record $Q_{1}$ (i.e., output of $\# 1$ JKFF) and $Q_{2}$ for the given "clock in" stream.

30. Consider the below circuit using a shift register and a JKFF. The chips are cleared and the clock started. Graph (on this page) a stack of output traces: $Q$, $K, A, B$, and $C$ underneath the clock input stream. Include at least 7 clock cycles.

31. For this problem you will need the pinout and function table of the ' 121 monostable. The required information can be found in Fig. 7.59 HH p. 462 and/or sn74121. pdf (downloaded from ti.com and placed in the class web site). Design circuits (and record exact wiring diagrams - including pin numbers) that do the following:
(a) make a $20 \mu$ s pulse on a positive edge
(b) make a $20 \mu \mathrm{~s}$ pulse delayed by 1 ms from a negative edge
(c) make a 50 kHz symmetrical square wave
32. Refer to the 74121 pinout function table described in the previous problem and answer the following multiple choice questions:
(a) If $A_{1}$ and $B$ are high, the monostable will produce a pulse if:
A. $A_{2}$ goes low to high
B. $A_{2}$ goes high to low
C. neither as it is inhibited
(b) If $A_{1}$ is low and $B$ is high, the monostable will produce a pulse if:
A. $A_{2}$ goes low to high
B. $A_{2}$ goes high to low
C. neither as it is inhibited
(c) If $A_{1}$ and $B$ are low, the monostable will produce a pulse if:
A. $A_{2}$ goes low to high
B. $A_{2}$ goes high to low
C. neither as it is inhibited
(d) If $A_{1}$ is low and the voltage on $A_{2}$ is unknown, the monostable will produce a pulse if:
A. $B$ goes low to high
B. $B$ goes high to low
C. it depends on the voltage on $A_{2}$
33. Consider a cartoon version of a 4-bit successive approximation ADC:


Assume that controls not shown on the diagram arrange that at the start of a conversion the DFF and shift register are cleared and then one 1 , starting in $Q_{A}$, shifts to the right through the shift register. Assume the DAC is perfectly linear, producing $V_{\text {out }}=\frac{1}{3}$ digital in, i.e., +5 V out for an input of $15=1111_{2}$ (and 0 V out for input of 0 ). Graph the DAC output voltage during the conversion if $V_{\text {in }}=3.14 \mathrm{~V}$. Graph the DAC output voltage during the conversion if $V_{\mathrm{in}}=2.99 \mathrm{~V}$. What is the smallest $V_{\mathrm{in}}$ that results in a digital output of 1? What is the smallest $V_{\text {in }}$ that results in a digital output of 2? Carefully compare the ideal ADC curve (HH Fig. 13.1A, p. 881) to what would result with this ADC. What is the difference?
34. Consider the classic Schmit 11 trigger circuit. Assume that the output of the 311 swings between +5 V and 0 V . (FYI: actually the 311 would require a pull-up resistor.) Design a circuit which has transitions at $+1.0 \mathrm{~V}\left(V_{0}\right)$ and $+1.5 \mathrm{~V}\left(V_{1}\right)$. Recall: when the 311's output is low we have a voltage divider (yielding $V_{0}$ ) with $R_{1} \| R_{3}$ and $R_{2}$ whereas when the 311's output is high we have a voltage divider (yielding $V_{1}$ ) with $R_{1}$ and $R_{2} \| R_{3}$. The difference between these two, $\Delta V$, is given by a voltage divider with $R_{1} \| R_{2}$
 and $R_{3}$; Further: $\Delta V / V_{0}=R_{2} / R_{3} ;\left(V-V_{1}\right) / V_{0}=R_{2} / R_{1}$

[^0]The above question has some difficulties. First it requests three answers ( $R_{1}, R_{2}, R_{3}$ ) from two equations (for the two transition voltages). Systems of equations with more unknowns than equations cannot in general be solved. (They are called under-determined.) While mathematicians may not approve of such problems, they occur all the time in real life. They are what "design" is all about: options to be selected. In this question if $\left(R_{1}, R_{2}, R_{3}\right)$ is a solution then so is $\left(x R_{1}, x R_{2}, x R_{3}\right)$, for any multiplier $x$. Design here then amounts to setting an overall scale for the resistors. "Reasonable" 2 resistor values are often in the range $\mathrm{k} \Omega$ to $\mathrm{M} \Omega$. Furthermore, actual for-sale resistors come in a limited range of values (see HH p. 1104). A second problem has to do with the ugly nature of the equations for the set-point voltages. In practice one rarely has particular values $V_{0}, V_{1}$ in mind, rather an approximate transition voltage $V_{T}$ (between $V_{0}$ and $V_{1}$ ) and hysteresis $\Delta V=V_{1}-V_{0}$ are often approximately known. A practical way of then solving these equations is to find the $R_{1} \| R_{2}$ that produces the desired approximate transition voltage given $R_{2}$ (the voltage divider equation says $\left(R_{1} \| R_{2}\right) / R_{2}=$ $V_{T} / V$, where $V_{T}$ is the 'bare' - no $R_{3}$ - set-point). and then determine the $R_{3}$ that produces the desired $\Delta V$.
(a) Calculate the three required resistances using the approximate approach (i.e., just using $\left.V_{T} \& \Delta V\right)$.
(b) Now select available resistors (i.e., those from the " $5 \%$ " values table HH p. 1104) and calculate the resulting transition voltages (i.e., the voltages we expect to be about 1.5 V and 1 V ).
(c) Price your parts (3 resistors +311 ), e.g., at mouser.com or digikey.com.
35. Assume that the cost of a flash ADC is proportional to the number of comparators and that the conversion time of a successive approximation ADC is proportional to the number of bits. Compare (calculate the ratio of) the costs of a 7-bit flash ADC and an 8-bit flash ADC. Compare (calculate the ratio of) the conversion times of a 7 -bit successive approximation ADC and an 8 -bit successive approximation ADC. How does the conversion time of the 7 -bit flash compare to the conversion time of the 8-bit flash?
36. Consider the diagram of a 555 (or the equivalent diagrams: HH Fig. 7.8). Use component values from the " $5 \%$ " table of HH p. 1104.
(a) Draw the circuit that produces continuous oscillation at about 50 kHz . from the 555. Describe (words!) how the circuit works.
(b) Draw the circuit that allows the 555 to act as a one-shot (monostable) with pulse duration of about $20 \mu \mathrm{~s}$. Describe (words!) how the circuit works.


[^1]37. Design a synchronous circuit built from three edge-triggered JKFFs that follows the below state diagram, where the three binary digits represent the values of $Q_{1} Q_{2} Q_{3}$ :

(i.e., when control line $U=1$ the circuit counts up to 4 (i.e., mod-5); when control line $U=0$ the circuit counts down from 4). Your job is to determine the gate arrangement needed to make this cycle run, i.e., connecting the outputs of the three JKFFs: $Q_{i}$ (and/or $\bar{Q}_{i}$ ) and the $U$ line to the inputs of the three JKFFs: $J_{i} K_{i}$ possibly using the usual (AND, OR,...) gates.

| Transition: | $J \quad K$ |  |
| :---: | :---: | :---: |
| $0 \longrightarrow 0$ |  |  |
| $0 \longrightarrow 1$ |  |  |
| $1 \longrightarrow 0$ |  |  |
| $1 \longrightarrow 1$ |  |  |


(a) Begin by considering the possible transitions of a single JKFF. What values of $J K$ allow a particular transition? Fill in the above table. Hint: in every row either $J$ or $K$ will be an $X$ for "don't care".
(b) Fill in the below table which displays the desired cycles

| $U$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $J_{1}$ | $K_{1}$ | $J_{2}$ | $K_{2}$ | $J_{3}$ | $K_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |  |  |  |
| 1 | 0 | 1 | 0 |  |  |  |  |  |  |
| 1 | 0 | 1 | 1 |  |  |  |  |  |  |
| 1 | 1 | 0 | 0 |  |  |  |  |  |  |
| 0 | 1 | 0 | 0 |  |  |  |  |  |  |
| 0 | 0 | 1 | 1 |  |  |  |  |  |  |
| 0 | 0 | 1 | 0 |  |  |  |  |  |  |
| 0 | 0 | 0 | 1 |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |  |  |

Note that there are additional "don't care" possibilities in the full truth table.
(c) Maxterm the 0s for $J_{3}$ to produce a product-of-sums.
(d) Make a Karnaugh map of $J_{2}$ using the four logical variables $U, Q_{1}, Q_{2}, Q_{3}$. Don't forget to include the Xs (don't care) in your map! Circle appropriate groups and report the resulting simplest possible boolean expression for $J_{2}$. Please carefully label your Karnaugh maps so I know what each row and column of the map represents!
38. We return here to the problem of finding circuits for state diagrams. Recall that the current state must totally control the following state. But what if we want various futures for a state in various circumstances?

The Morse Code is a bit unusual encoding of letters in that the letters require differing numbers of dot/dashes from one $(\mathrm{E}=$ dot $=0, \mathrm{~T}=$ dash=1) to four (e.g., $\mathrm{Q}=$ dash-dash-dot-dash). If we restrict ourselves to the eight letters expressed with 3 bit Morse Code expressions: ( $\mathrm{D}=100$, $\mathrm{G}=110, \mathrm{~K}=101, \mathrm{O}=111, \mathrm{R}=010, \mathrm{~S}=000, \mathrm{U}=001, \mathrm{~W}=011$ ), we can make some odd sentences like: DORKS GROK SORROW. Imagine a circuit that cycles through these letters (i.e., $\mathrm{D} \rightarrow \mathrm{O} \rightarrow \mathrm{R} \rightarrow \mathrm{K} \rightarrow \mathrm{S} \rightarrow$ etc.). However see that the four Os have different targets: $\mathrm{O} \rightarrow \mathrm{R}, \mathrm{O} \rightarrow \mathrm{K}$, $\mathrm{O} \rightarrow \mathrm{W}$. Therefore the circuit must distinguish four different types of O (but of course the display will show the same lettershape for each O state). Thus:
$\mathrm{D} \rightarrow \mathrm{O}_{0} \rightarrow \mathrm{R}_{0} \rightarrow \mathrm{~K}_{0} \rightarrow \mathrm{~S}_{0} \rightarrow \mathrm{G} \rightarrow \mathrm{R}_{1} \rightarrow \mathrm{O}_{1} \rightarrow \mathrm{~K}_{1} \rightarrow \mathrm{~S}_{1} \rightarrow \mathrm{O}_{2} \rightarrow \mathrm{R}_{2} \rightarrow \mathrm{R}_{3} \rightarrow \mathrm{O}_{3} \rightarrow \mathrm{~W}$
Each state will now be labeled with five bits $Q_{1} Q_{2} Q_{3} Q_{4} Q_{5}-Q_{3} Q_{4} Q_{5}$ specifying the lettershape and $Q_{1} Q_{2}$ distinguishing the various 'identical' letters. Fill in the below table so it displays the desired cycle and the $D_{i}$ required to generate it. Find a boolean expression for one of the $D_{i}$ in terms of the $Q_{i}$.

| $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $Q_{4}$ | $Q_{5}$ | $D_{1}$ | $D_{2}$ | $D_{3}$ | $D_{4}$ | $D_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |


39. HH describes more than half a dozen temperature transducers. Pick out three of these and 'compare and contrast' them - that is report their advantages and disadvantages. Describe a situation in a physics lab requiring a temperature measurement and report which transducer you would select and why.
40. A running average (of five) digital filter would be described by the equation:

$$
y_{n}=\frac{1}{5}\left(x_{n}+x_{n-1}+x_{n-2}+x_{n-3}+x_{n-4}\right)
$$

Let $x_{n}$ be a unit step that occurs at $n=6$, i.e.,

$$
x_{n}=\left\{\begin{array}{ll}
0 & n<6 \\
1 & n \geq 6
\end{array} \quad \text { where you are to assume: } y_{n}=0 \text { for } n<6\right.
$$

The below right shows the resulting response $\left(y_{n}\right)$ to this unit step input. The below left shows a Bode plot: the equilibrium $y_{n}$ amplitude when the input $x_{n}$ is a unit-amplitude sinusoid with frequency $f$. (The $x$ axis is $f$ divided by the Nyquist frequency.)


A fourth order Bessel digital filter would be described by the equation:
$y_{n}=\frac{1}{68.94}\left(x_{n}+4 x_{n-1}+6 x_{n-2}+4 x_{n-3}+x_{n-4}\right)-0.05034 y_{n-4}+0.3599 y_{n-3}-1.0459 y_{n-2}+1.5042 y_{n-1}$
The below right shows the resulting response $\left(y_{n}\right)$ to the unit step input. The below left shows a Bode plot: the equilibrium $y_{n}$ amplitude when the input $x_{n}$ is a unit-amplitude sinusoid with frequency $f$. (The $x$ axis is $f$ divided by the Nyquist frequency.)

(a) Calculate $y_{7}$ for both filters.
(b) If the sampling rate is 10000 Hz , what is the Nyquist frequency?
(c) If the input is a unit-amplitude sinusoid with frequency $f=2500 \mathrm{~Hz}$, use the above graphs to find the resulting $y$ amplitude for both filters.
41. The Al-Alaoui digital differentiator is given by the relation:

$$
y_{n}=\frac{8}{7}\left(x_{n}-x_{n-1}-\frac{1}{8} y_{n-1}\right)
$$

(FYI: this is the inverse of a $75 / 25 \mathrm{mix}$ of digital rectangular/trapezoidal integration.)
If the input $x_{n}$ is a unit step that occurs at $n=3$, i.e.,

$$
x_{n}=\left\{\begin{array}{ll}
0 & n<3 \\
1 & n \geq 3
\end{array} \quad \text { where you are to assume: } y_{n}=0 \text { for } n<3\right.
$$

the below left shows the resulting response $\left(y_{n}\right)$. (The dotted line is the unit step input itself.) The below right shows a Bode plot: the equilibrium $y_{n}$ amplitude when the input $x_{n}$ is a unit-amplitude sinusoid with frequency $f$. The $x$ axis is $f$ divided by the Nyquist frequency. (The dotted line is the line $y=2 \pi f / f_{0}$, see below.)


(a) If the data points are sampled every $\Delta=50 \mu \mathrm{~s}$, what is the Nyquist frequency?
(b) If the input steadily rises: $x_{n}=n$, calculate $y_{n}$ for $n=1,2,3$ (assume $y_{0}=0$ ). What result should have been expected?
(c) The below filter circuit is to implement this recursion. Fill in the three boxes: ? $\qquad$ with the correct numerical factors.

(d) Record the transfer function $A(z)$ for this filter.
(e) The dotted line in the Bode Plot is the line $y=2 \pi f / f_{0}$, where $f_{0}$ is the sampling frequency. Why is it a good thing for this differentiator to approximate this straight line?
(f) The inverse of trapezoidal integration is the filter:

$$
y_{n}=2\left(x_{n}-x_{n-1}-\frac{1}{2} y_{n-1}\right)
$$

Use Mathematica to calculate sample output. Is the output stable?
(g) The inverse of rectangular integration is the filter:

$$
y_{n}=x_{n}-x_{n-1}
$$

Make a Bode plot of this relation.
42. For the last 57 years researchers have reported the number of (live) moose on Isle Royale on February 15 (with the aim of looking at predator/prey relationships on an isolated island). I have performed a Fourier transform on these 57 measurements using the below code:
data=Flatten[Import["moose.csv"]]
Data=Fourier[data]
Data=RotateLeft[Data,1]
ListLinePlot [Abs[Data], PlotRange->All]
Export["mooseAll.eps",\%]
ListLinePlot [Abs [Data] , PlotRange->\{\{1, 16\}, \{0, 1300\}\}]
Export["mooseLow.eps",\%]
ListLinePlot [Abs[Data], PlotRange->\{\{41,56\}, \{0, 1300\}\}]
Export["mooseHigh.eps",\%]


In the plot to the right of the code (mooseAll.eps) three regions have been noted: $X$ (a single point) is the rightmost data point which is in fact the largest point and $Z \& Y$ which represent the left and right regions of the plot. These last two are displayed directly below and are mooseLow.eps and mooseHigh.eps from the above code.


(a) Report the numerical value (with units of course): the sampling interval $\Delta$ and the Nyquist frequency.
(b) What is represented by $X$ ? Why is it so large?
(c) $Z \& Y$ look like mirror images of each other. Why?
(d) Aside from $X$, the largest points are at 1 and 56 . What frequency (with units of course) do these points represent? Points at $2 \& 3(55 \& 54)$ are also relatively large. What period do these points represent?
(e) The seventeen year locusts are present in large numbers every 17 years. Where (at what $x$-value) would such behavior show up in this plot? Some animals annually alternate population (i.e., the population each year varies as: high, low, high, low, etc.). Where would such behavior show up in this plot? Would there be any special problems associated with using the above method to measure such alternating behavior?
(f) What would be the likely consequence (for the moose) if $X$ were substantially smaller (or $Z \& Y$ much bigger)?
43. Generally a thrown football has a bit of wobble. The same is true of the Earth: while the Earth's angular momentum points in an (approximately) fixed direction, its spin vector $\overrightarrow{\boldsymbol{\omega}}$ wobbles a bit to make up for the unequal moments of inertia of the slightly none-spherical Earth. The effect is called the Chandler Wobble after the American astronomer Seth Chandler (1846-1913) who discovered it.

The International Earth Rotation Service (http://hpiers.obspm.fr/) distributes datasets that record the location $((x, y)$ in mas) of the pole since 1846. The class web site includes a file chandler.csv of $N=2048$ date triples: date, $x, y$ and a file chandler2.m that is an ordered list of the complex $(z=x+i y)$ locations of the pole sampled at $\Delta=0.05$ year. Following the instructions in chandler.txt this data file can be loaded into Mathematica where you can easily use a Fourier transform to convert this time sampled data into a set of frequency amplitudes. Note: Mathematica stores the zero frequency result in Data [[1]]; following the RotateLeft the $n^{t h}$ harmonic amplitude will be found in Data[[n]] and the DC (zero frequency) result will be in the last element of Data: Data[[2048]]. The result should look like this:


Note two closely spaced peaks around $n \approx 100$ and a big (DC) peak at $n=N=2048$
(a) Find the precise location of these two low frequency peaks. Note you can plot a smaller domain with command like:
ListLinePlot [Abs [Data], PlotRange->\{\{80, 105\}, All\}]
or simply list a range of values with a command like:
Abs[Data[[80; ;105]]]
Convert the $n$ value of each peak to frequency (in unit: year ${ }^{-1}$ ) and finally report the period of these two peaks in days.
(b) Aside from a really small peak at $n=1946$ and the DC peak at $n=2048$ there are no peaks at frequencies above $N / 2$, whereas you might have thought to find equally strong up-aliased negative frequency peaks above $N / 2$ matching those in $0<n<N / 2$. How does the data used in the problem differ from the data used in other FFT problems and how does tha allow this absense? I claim that the pole is moving clockwise about the origin. Confirm this statment (and report your evidence). Under what common conditions are you guaranteed to find matching equally strong peaks above $N / 2$ ?
(c) One of the two frequencies you found above should correspond to an annual forcing function resulting from a seasonal redistribution of air/sea angular momentum. The other frequency is assigned to the free wobble period of a somewhat rigid body (the Earth). Now you may remember being told that the response of a driven system should be at the driving frequency. Explain why we see here both the free oscillation frequency and the driving frequency.
44. Sun Spots are Earth-sized regions of the Sun's surface that appear relatively dark because they are cooler than the surrounding surface of the Sun. There is a long history of recording the number of these spots; http://solarscience.msfc.nasa.gov/SunspotCycle.shtml provides a list of monthly average International Sunspot Number since 1749. The file SunSpot2.m at the class web site contains a list of 2052 monthly average Sun Spot number since 1843. The file SunSpot2.txt describes how you will manipulate this data in Mathematica.
Go to the web site: http://www-users.cs.york.ac.uk/~fisher/mkfilter and find the parameters for a $4^{\text {th }}$ order low-pass Butterworth filter with a sampling frequency of 1 and a corner frequency of 0.2 . Using code similar to that at the bottom of DSP.filter.txt, filter the Sun Spot data with this filter. Your code will start something like:

Do $[y[[n]]=1 x[[n-4]]+4 x[[n-3]]+\ldots+0.7820951980 y[[n-1]],\{n, 5,2052\}]$
Notice that the first 4 values of $y[n]]$ will be not be created, so you will discard them:
data=Drop [y, 4]
At the end of this process your Bode plot should look like this:

(a) Print out and turn in the Mathematica code you used to filter and Fourier Transform this data. (No more than 1 page of Mathematica code should be printed out.)
(b) The ListPlots of y and x should look quite similar; nevertheless report some differences.
(c) The two peaks a bit above $n=0$ and a bit below $n=N$ seem identical. Why is this expected?
(d) Determine the precise location of the small $n$ peak; Report the period of this Fourier component in years.
(e) The region $500<n<1500$ seems to have much less 'noise' than other regions. Why?
(f) Fourier transform the raw x data and note fairly uniform noise distribution.
(g) Use your recursion relation to form the amplitude function $A[w]$. Produce and turn in a hardcopy Bode plot using code like: Plot[Abs[A[Pi f] ],\{f,.01,1\}].
45. Using an ADC you collected data at a sampling frequency of $f_{0}=25 \mathrm{kHz}$. You remember (after the data has been collected) that if the the original data contained frequencies above the Nyquist frequency they would be aliased into the Fourier spectrum. So you apply a digital low pass filter to the stored data that will highly attenuate any frequency above $.25 \times f_{0}$. Would this process eliminate the feared aliasing? Explain!
46. Vocabulary
A. CMOS, TTL
B. DIP, through-hole, SMT
C. Tri-state (Hi-Z)
D. pull-up resistor
E. logic probe
F. gate delay
G. glitch
H. fan-out
I. wired OR
J. two's complement
K. decoder
L. encoder
M. multiplexer (MUX)
N. demultiplexer (deMUX)
O. SRFF
P. JKFF
Q. DFF
R. synchronous
S. ripple counter
T. shift register
U. maxterm (POS), minterm (SOP)
V. Bus
W. state diagram
X. PLA or PAL
Y. FPGA
Z. ROM, PROM, EPROM
a. RAM (D \& S)
b. address
c. register
d. stack
e. stack pointer
f. program counter
g. BCD
h. ASCII
i. baud
j. byte, nibble
k. comparator
l. Schmitt trigger
m. hysteresis
n. monostable
o. VCO
p. transducer
q. DAC
r. dual-slope ADC
s. successive approximation ADC
t. flash ADC
u. Bode plot, frequency domain
v. DSP
w. FFT, aliasing
x. heterodyne
y. Nyquist frequency
z. FIR \& IIR digital filters

## Dr. Adam Whitten designed the following problems

47. Reduce the following boolean expressions:
(a) $(A+\bar{B})(A+B)$
(d) $\overline{\bar{A} \cdot(\bar{A}+\bar{B}) \cdot(A+\bar{B})}$
(b) $(A+B)(\bar{A} B)$
(e) $A B+\bar{A} \bar{B}+A \bar{B}+\bar{A} B$
(c) $\overline{A B} A \bar{B}$
(f) $\overline{(A+B)(A+C)+A(B+C)}$
48. The figure to the below shows circuits for converting a 3-bit binary number to Gray code (A) and a 3-bit Gray code to binary (B). Show by means of a truth table that the circuits behave as indicated.

49. Given the truth table at the right:
(a) Write out the sum of products (SOP).
(b) Minimize the expression using boolean algebra.
(c) Make a Karnaugh map and write out the sum of products. Is this result the same as your minimized expression from part (b)? If not, locate the terms in (b) on your Karnaugh map and show that they also cover the ones.
(d) Using the Karnaugh map's 0s write out a product of sums (POS) result.

| $A$ | $B$ | $C$ | $X$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

(e) Draw circuit diagrams for the expressions in (c) and (d).
50. Draw out how to implement the truth table in problem 49 using a 741518 -input multiplexer. Draw a block diagram of the multiplexer and clearly indicate how each pin is connected. Download the 74151 datasheet from the class web site or Google it.
51. Design a temperature warning circuit for a cluster of four temperature sensors using a single chip. The output of a temperature sensor goes high when a temperature threshold is reached. The circuit should output a logic high when 3 of the 4 sensors are high.
52. Complete the truth table for the non-standard flip-flop circuit below. Make sure to indicate any undetermined conditions.


| $A$ | $B$ | $Q_{1}$ | $Q_{2}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 |  |  |
| 0 | 1 |  |  |
| 1 | 0 |  |  |
| 1 | 1 |  |  |

53. For the cross-NAND SR FF shown below, graph $Q$ and $\bar{Q}$ as functions of time for the given $S$ and $R$ inputs at the right. Stack the graphs of $S, R, Q$, and $\bar{Q}$ so the simultaneous behavior of the inputs and output can be examined.

54. For the clocked level-triggered cross-NAND SR FF shown below, graph $Q$ and $\bar{Q}$ as functions of time for the given $S$, $R$, and CLK inputs at the right. Stack the graphs of $S, R$, CLK, $Q$, and $\bar{Q}$ so the circuit behavior can be examined.



55. The circuit below contains two stages, each of which is a clocked level-triggered SR FF. The clock is inverted before going to Stage 2, requiring a complete clock pulse before the output changes. Note: Some texts erroneously call this an "negative edge-triggered" SR FF.
(a) Show that the output changes at the negative clock edge according to the values of $S$ and $R$ by stacking graphs of $S, R$, CLK, $A, B, \overline{\mathrm{CLK}}$, and $Q$ for the given inputs.
(b) What modification would turn this into a clocked "positive edge-triggered" SR FF?


56. Consider an edge-triggered JK FF. Graph the output $Q$ as a function of time by stacking graphs of $J, K$, CLK, and $Q$ for the given inputs for:

(a) a positive edge-triggered JK FF
(b) a negative edge-triggered JK FF

Place both (a) and (b) in the same stacked graph to help show the differences between the two. Make sure to clearly label (a) and (b).

57. Design a circuit using edge-triggered JK FFs whose outputs $Q_{2} Q_{1} Q_{0}$ count from 000 through 111 and then start over again. Note: You will build this circuit in lab number 2.
58. Design a circuit using edge-triggered JK FFs that will follow the state diagram shown to the right. Hint: the next state depends on the current value and whether the count is increasing or decreasing. "Increasing" or "decreasing" is considered a state and you can use a FF to indicate this state.
59. Explain why thermistors are preferred over thermocouples for controlling the temperature of an environment.
60. Explain the differences between a photodiode and a phototransistor.
61. The graphs to the right show frequency response plots for three $4^{\text {th }}$ order high pass filters - Bessel, Butterworth, and Chebyshev.

All three filters have a corner frequency of 2500 Hz and are designed for a sampling rate of 10000 Hz. The Chebyshev filter has the ripple specified as -0.5 dB .
(a) What is the Nyquist frequency for the three filters.
(b) Use the graphs to estimate the output amplitude for a unit amplitude sine wave input with a frequency of 2500 Hz .
(c) Describe in words the differences between the three filter responses.



Chebyshev Frequency Response



[^0]:    ${ }^{1}$ Otto Herbert Schmitt (1923-1998); Ph. D. 1937 Washington University (St. Louis) (physics, zoology), UMn BioPhysics prof 1941-98

[^1]:    2 "Small" resistors may lead to large power loss: $V^{2} / R$; "large" resistors are more susceptible to noise and stray capacitance problems.

