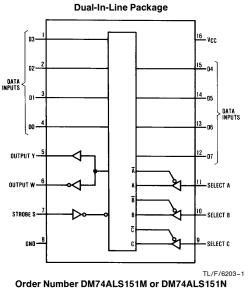
National Semiconductor

DM74ALS151 1 of 8 Line Data Selector/Multiplexer

General Description


This Data Selector/Multiplexer contains full on-chip decoding to select one-of-eight data sources as a result of a unique three-bit binary code at the Select inputs. Two complementary outputs provide both inverting and non-inverting buffer operation. A Strobe input is provided which, when at the high level, disables all data inputs and forces the Y output to the low state and the W output to the high state. The Select input buffers incorporate internal overlap features to ensure that select input changes do not cause invalid output transients.

Features

Function Table

- Advanced oxide-isolated, ion-implanted Schottky TTL process
- \blacksquare Switching performance is guaranteed over full temperature and V_{CC} supply range
- Pin and functional compatible with LS family counterpart
- Improved output transient handling capability

Connection Diagram

See NS Package Number M16A or N16A

Inputs Outputs Select Strobe Y w С в Α S Х Х Х н L н $\overline{D0}$ D0 L L L L L Н L D1 D1 L D2 L н L L D2 L н н D3 D3 L D4 Н L L L D4 D5 н D5 L. н L Н Н D6 D6 L L D7 н н н L D7

H = High Level, L = Low Level, X = Don't Care D0 thru D7 = the level of the respective D input

RF

RRD-B30M105/Printed in U. S. A.

DM74ALS151 1 of 8 Line Data Selector/Multiplexei

August 1995

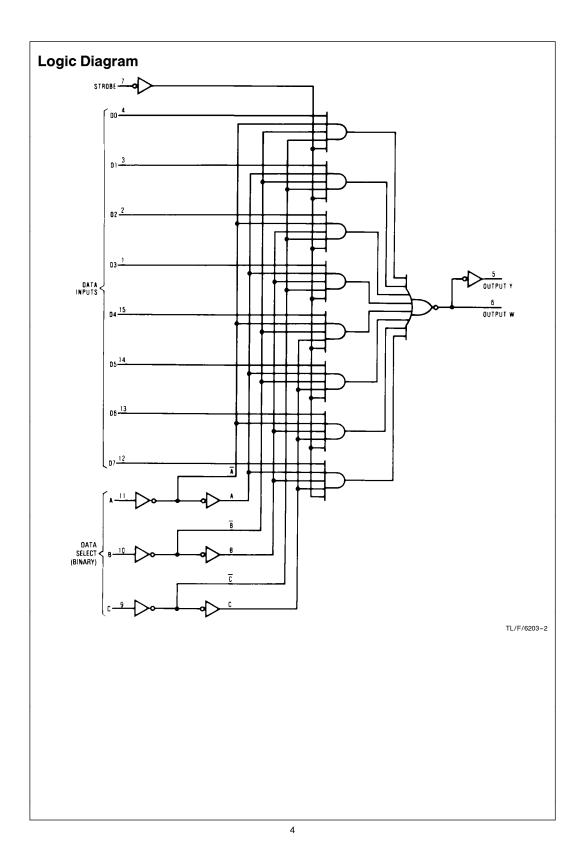
©1995 National Semiconductor Corporation TL/F/6203

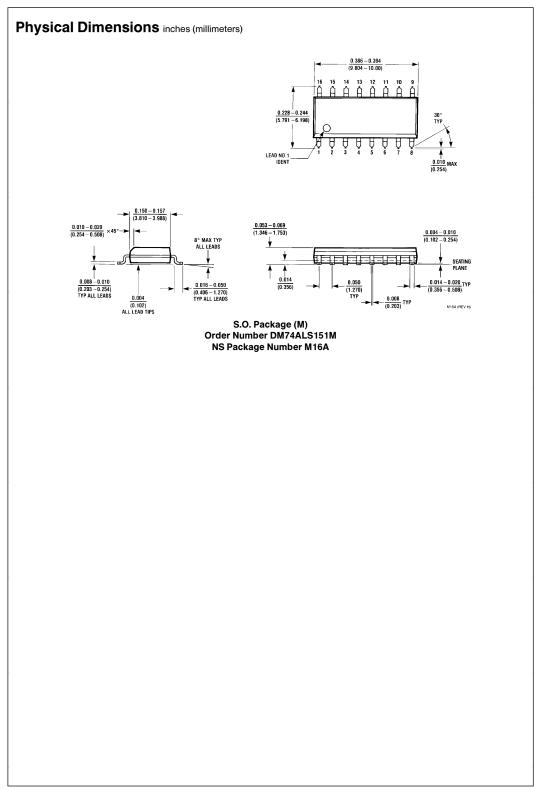
Absolute Maximum Ratings

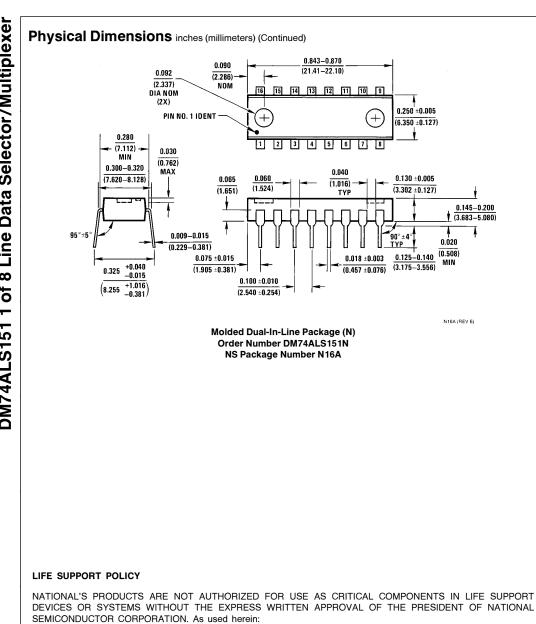
Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range DM74ALS	0°C to +70°C
Storage Temperature Range	-65° C to $+150^{\circ}$ C
Typical θ _{JA} N Package M Package	78.0°C/W 107.0°C/W

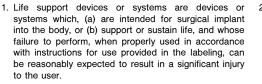
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions


Symbol	Parameter		Units		
Cymbol		Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C


Electrical Characteristics


over recommended operating free-air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C.


Symbol	Parameter	Conditions		Min	Тур	Мах	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_{IN} = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = 4.5V, I_{OH} = Max$ $I_{OH} = -400 \ \mu\text{A}, V_{CC} = 4.5V \text{ to } 5.5V$		2.4	3.2		V
	Voltage			$V_{CC} - 2$			V
V _{OL}	Low Level Output Voltage	$V_{\rm CC} = 4.5 V$	74ALS I _{OL} = 24 mA		0.35	0.5	V
l	Input Current at Max Input Voltage	$V_{CC} = 5.5V, V_{IN} = 7V$				0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = 5.5V, V_{IN} = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{CC} = 5.5V, V_{IN} = 0.4V$				-0.1	mA
IO	Output Drive Current	$V_{CC} = 5.5V, V_{OUT} = 2.25V$		-30		-112	mA
ICC	Supply Current	$V_{CC} = 5.5V$ All Inputs = 4.5V			7.5	12	mA

Symbol	Parameter	Conditions	From	То	DM74ALS151		Units
					Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	$V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$ $R_L = 500\Omega$	Select	Y	4	18	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		Select	Y	8	24	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		Select	W	7	24	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		Select	W	7	23	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		Data	Y	3	10	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		Data	Y	5	15	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		Data	W	3	15	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		Data	W	4	15	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		Strobe	Y	4	18	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		Strobe	Y	4	19	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		Strobe	W	5	19	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		Strobe	w	5	23	ns

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Corporati 1111 Wes Arlington, Tel: 1(800	on I tt Bardin Road TX 76017 y 272-9959 I y) 737-7018 I	National Semiconductor Europe Fax: (+49) 0-180-530 85 86 Email: cnivuge@tevm2.nsc.com Joutsch Tei: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Ialiano Tei: (+49) 0-180-534 16 80	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
---	---	---	--	--

0.843-0.870

(21.41-22.10)

12 11 10 9

0.040

(1.016)

TYP

0.018 ±0.003

(0.457 ±0.076)

+

0.250 ±0.005

(6.350 ±0.127) t

0.130 ±0.005

(3.302 ±0.127)

0.125-0.140 (0.508)

(3.175-3.556)

90°±4

0.145-0.200 (3.683-5.080)

0.020

N16A (REV E)

14 13

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.