Consider the following three objects all thrown with $\omega_{3}=40 \mathrm{rad} / \mathrm{s}$ but with a small off-axis spin such that $\theta=10^{\circ}$
A. A Frisbee of mass $M=175 \mathrm{~g}$ and radius $R=13.7 \mathrm{~cm}$ (we ignore the height which is about 3.4 cm)
B. A wooden dowel with $M=38 \mathrm{~g}$, radius $R=.94 \mathrm{~cm}$ and length $\ell=23 \mathrm{~cm}$
C. A thin-walled cylinder with $M=16 \mathrm{~g}$, radius $R=2.4 \mathrm{~cm}$ and length $\ell=8 \mathrm{~cm}$

For a disk:

$$
I_{A}=\frac{1}{4} M R^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

for a solid cylinder:

$$
I_{B}=\frac{1}{12} M\left(\begin{array}{ccc}
3 R^{2}+\ell^{2} & 0 & 0 \\
0 & 3 R^{2}+\ell^{2} & 0 \\
0 & 0 & 6 R^{2}
\end{array}\right)
$$

for a thin-walled cylinder:

$$
I_{C}=\frac{1}{12} M\left(\begin{array}{ccc}
6 R^{2}+\ell^{2} & 0 & 0 \\
0 & 6 R^{2}+\ell^{2} & 0 \\
0 & 0 & 12 R^{2}
\end{array}\right)
$$

For each object report the wobble frequency in the body frame (and the direction of $\boldsymbol{\omega}_{\perp}$ motion: same as or reverse from ω_{3}) and the wobble frequency in the inertial frame.

