OPERATION MANUAL

MEADE 12" LX200 SCT

Summer 2000

Location
N $45^{\circ} 34^{\prime} 31^{\prime \prime}$ (34.521')
W 94º $23^{\prime} 46^{\prime \prime}$ (23.785')
$=06^{\mathrm{h}} 17^{\mathrm{m}} 35^{\mathrm{s}}$
Garmin 92 GPS 8/6/00

Visual Backs

1.25" Schmidt-Cassegrain Visual Back

Threads directly to the back of Meade SC telescopes. Accepts $1.25^{\prime \prime}$ eyepieces and accessories. One thumb set screw.
Required for eyepiece-projection photography with a tele-extender.
Orion, 1997. List \$50 \#15048 \$39.50 (2.98)

2" Schmidt-Cassegrain Visual Back

Threads directly to the back of Meade SC telescopes. Accepts 2" eyepieces and accessories.
Two thumb set screws.
Orion, 1997. List \$45 \#5272 \$26.95 (2.43)

Eyepiece Adaptors

2"-to-1.25" Adapter

Converts any $2^{\prime \prime}$ focuser, star diagonal, or holder for 1.25 " eyepieces and accessories.
Orion, 1997. List \$36.95 \#8768 \$19.95 (2.43)

Electric Focus Control

MOTOFOCUS

Plug in style electric focuser. Attaches over focus knob with a nylon thumb screw. Controlled by the Keypad Hand Controller when plugged into the Power Panel or by a separate hand control into which it may be plugged. Variable speed control on motor unit and/or through Keypad Hand Controller. For Meade LX5, LX6 by Jim's Mobile Inc.
Orion, 1997. \#2386 \$124 (3.95)

Eyepieces (1.25" O.D.)

35 mm	87 x	34^{\prime}	0.56°	$\left(49^{\circ}\right)$	Celestron	Ultima Series
28 mm	109 x	25^{\prime}	0.41°	Or $\left(45^{\circ}\right)$	Meade	Research Grade
26 mm	117 x	25^{\prime}	0.43°	Plossl $\left(50^{\circ}\right)$	Meade	Series 4000
26 mm	117 x	26^{\prime}	0.44°	Super Plossl $\left(52^{\circ}\right)$	Meade	Series 4000
20 mm	152 x	22^{\prime}	0.36°	WA	Meade	Research Grade

8/2/99, 3/9/00, 4/9/00, 5-27-01, 6-17-01

Set LX200 clock $\pm 5 \mathrm{sec}$ of CST. Make the last focus adjustment so that \square the star shifts to upper right (cw) \square the star shifts to lower left (ccw).
Initialize keypad with an alignment star as usual. Read the sidereal time (Mode 3). Enter SAO number of star with RA closest to the sidereal time from Table 1. Press ENTER. Press GOTO. Center the star in the eyepiece. Return to POLAR and select by pressing ENTER. Enter SAO number again. Press and Hold ENTER until keypad beeps. Pressing MODE at any time terminates polar sequence.

Table 1. Stars within 5° of the Celestial Equator

The Meade database contains SAO stars brighter than $7^{\text {th }}$ magnitude from the catalogue. It is accessed through the keypad STAR key, which contains a menu of three options: 351 Meade alignment STARs, 33 stars by NAME, and 15,928 stars from the SAO.

To select the SAO database for the STAR key:
Press STAR
Press ENTER to obtain menu: STAR, NAME, SAO.
Move arrow to SAO with NEXT key
Press ENTER to select SAO database
Press MODE to enter SAO digits
Press ENTER to obtain SAO star.

To use SAO star numbers

Press STAR
Enter SAO digits
Press ENTER

Caution:

Since there is a discrepancy between the SAO star magnitudes and those commonly listed in other catalogues, stars near the limiting magnitude of 7.0 may not be in the Meade database.

Press and hold ENTER
(get beep \& blinking cursor)
Enter time digits over cursor
(use PREV or NEXT key to correct or skip)
Press ENTER to start clock
Press MODE to exit

Focal Len. (App. Field)	Power	True Field	Dbl. Res.		Type	Notes	
						Low	
$35 \mathrm{~mm}\left(49^{\circ}\right)$	85x	$34 '$	$7{ }^{\prime \prime}$		$5-\mathrm{el}$	Celestron Ultima FMC threaded	
1-1/8 (45°)	105x	26^{\prime}	$6 "$		OR	Edmund Scientific (28.6mm)	
$28 \mathrm{~mm}\left(45^{\circ}\right)$	110x		24^{\prime}	5.5"		OR	Meade Research MC
$26.6 \mathrm{~mm}\left(45^{\circ}\right)$	115x		23^{\prime}	5"		OR	Cave Optical Co.
$26 \mathrm{~mm}\left(52^{\circ}\right)$	115x		26^{\prime}	5"		SPL	Meade S4000 MC
						Medium	
$20 \mathrm{~mm}\left(60^{\circ}\right)$	150x		24^{\prime}	4"		WA	Meade S4000 MC
$16.3 \mathrm{~mm}\left(45^{\circ}\right)$	185x		14^{\prime}	3"			Galoc EL-16
$5 \mathrm{~mm}\left(50^{\circ}\right)$	245		12^{\prime}	2.'		High	
12.5 mm (50)	245x		12	2.5		PL	Orion MC ill. ret., sep 14", two SR-44
$12 \mathrm{~mm}\left(40^{\circ}\right)$	254x		8'	2.5 "		MA	Meade ill. ret.

Abbr. Type (App. Field) Crit Apert. Eye relief

PL	Plossl $\left(50^{\circ}\right)$	f $/ 6$	$\sim 75 \%$ focal length
SPL	Super Plossl $\left(52^{\circ}\right)$	f/6	$\sim 75 \%$ focal length
OR	orthoscopic $\left(45^{\circ}\right)$	f/4.5	$\sim 80 \%$ focal length
WA	wide angle $\left(>55^{\circ}\right)$		

MA
All About ... Sam Brown, p. 13

C coated, at least one air-glass surface
FC fully coated, all air-glass surfaces single coated with magnesium fluoride
MC multi-colated, at least one air-glass surface multi-coated, others likely single, or none
FMC fully multi-coated, all air-glass surfaces
For double star apparent separation of 10 arcmin:

$$
\begin{aligned}
\theta= & \alpha / \mathrm{M} \quad \text { (true field }=\text { apparent field } / \text { magnification) } \\
\text { magnification } & =600 \text { / sep" } \\
\text { eyepiece }(\mathrm{mm}) & =5 \times 1 \text { sep" } \\
& =3.2 \times \mathrm{sep} \mathrm{f} / 10(\mathrm{~F}=3048 \mathrm{~mm}) \\
& \text { @ } \mathrm{f} / 63(\mathrm{~F}=1920 \mathrm{~mm})
\end{aligned}
$$

Focal Length	Power	True Field	Dbl. Res.	Type	App. Field	Notes	
35 mm		$34 '$		$5-\mathrm{el}$	49°	Celestron Ultima FMC $\frac{\text { Low Power }}{\text { threaded }}$	
	85x		$7{ }^{\prime \prime}$				
	55x		53"				
1-1/8	105x	26^{\prime}	$6 "$	OR	45°	Edmund Scientific (28.6 mm)	
	67x	$40 "$	24'		OR		
28 mm	110x	$39^{\prime \prime}$		5.5"		45°	Meade Research Grade MC
	68x						
26.6 mm	115x		23^{\prime}	5"	OR	45°	Cave Optical Co.
	72x	37 "					
26 mm	115x		26^{\prime}	5"	SPl	52°	Mead Series 4000 MC
	74 x	$32^{\prime \prime}$					
					WA	60°	Medium Power
20 mm	150x	38'	24^{\prime}	$4 "$			Meade S4000 Series MC
16.3 mm	96x						
	185x		14^{\prime}	$3 "$		45°	Galoc EL-16
	118x	23^{\prime}					
12.5 mm	245x					$\underline{\text { High Power }}$	
			12^{\prime}	2.5 "	Pl	50°	Orion MC ill. ret., sep 14",
							two SR-44
12 mm	154x		19"	2.5"	MA	40°	Meade
	254x		8'				
	160x		$15 "$				

Pl Plossl (50 $\left.{ }^{\circ}\right)$
SPl Super Plossl (52°)
OR orthoscopic (45°)
WA wide angle ($>55^{\circ}$)
MA modified achromat
critical aperture $\mathrm{f} / 6$ eye relief $\sim 75 \% \mathrm{f}$ critical aperture $\mathrm{f} / 6$ eye relief $\sim 75 \% \mathrm{f}$ critical aperture $\mathrm{f} / 4.5$ eye relief $\sim 80 \% \mathrm{f}$

C coated, at least one air-glass surface
FC fully coated, all air-glass surfaces single coated with magnesium fluoride
MC multi-colated, at least one air-glass surface multi-coated, others likely single, or none
FMC fully multi-coated, all air-glass surfaces
$\theta=\alpha / M \quad$ (true field = apparent field / magnification)
$M=600$ " / sep" Magnification (M) required for an apparent separation of 10 arcmin for double stars:

$$
\begin{array}{rlrl}
\text { Eyepiece focal length } & =5 \times \text { sep" } & & \text { at } \mathrm{f} / 10 \\
& & F=3048 \mathrm{~mm} \\
& =3.2 \times \text { sep" } & & \text { at } \mathrm{f} / 6.3
\end{array}
$$

		Power		FOV		Dbl. Res.		Remarks:
Mfg.	Foc. Len.	f/10	f/6.3	f/10	f/6.3	f/10	f/6.3	
Celestron	35 mm	85x	55x	34^{\prime}	54^{\prime}	5.5"	$9{ }^{\prime \prime}$	Celestron Ultima FMC threaded
Ed Sci	1-1/8 in	105x	67x	26^{\prime}	40^{\prime}	4.5 "	7"	Edmund Scientific
Meade	28 mm	110x	70x	24^{\prime}	39^{\prime}	4.5 "	7"	Meade Research MC
Cave Opt.	26.6 mm	115x	75x	$23 '$	36^{\prime}	4"	$6.5 "$	Cave Optical Co.
Meade	26 mm	115x	75x	26^{\prime}	48'	4"	$6.5 "$	Meade S 4000 MC
Meade	20 mm	150x	95x	24^{\prime}	38^{\prime}	$2.5 "$	5"	Meade S 4000 MC
Galoc	16.3 mm	185x	118x	14^{\prime}	$23 '$	$2 "$	$3 "$	Galoc EL-16
Orion	12.5 mm	245x	154x	12^{\prime}	19^{\prime}	1.5"	$2.5 "$	Orion MC ill. ret., sep 14", two SR-44 bat.
Meade	12 mm	254x	160x	8'	15^{\prime}	1.5"	$3 "$	Meade ill. ret.

Within a few minutes of powering up the LX200 the Keypad becomes warm, which is normal for the system. The electronics utilize a heat sink as a means to provide the right operating environment temperature for the LCD display even in sub-zero weather. Keep the Keypad in a warm area to allow immediate proper display performance.

The LX200 Keypad button as described as follows:

1. ENTER Key

The ENTER key (1, Fig. 6) is used to select a menu file, a file option, or to edit a value.
a. To select a file or an option, press and release the ENTER key.

The LX200 will give a short beep tone and perform the requested action.
b. To edit a value, press and hold the ENTER key until a double beep tone is heard and a blinking cursor appears in the display.

LX200 KEYPAD HAND CONTROLLER

p. 26 \#4

ALT LED light is only visible when entering numerical data
p. 26 \#5
speed indicator LED's illuminate to show chose slew rate (SLEW, FIND, CNTR, GUIDE)
MODES
TELESCOPE / OBJECT LIBRARY
COORDINATES / GOTO
CLOCK / CALENDAR
TIMER / FREQUENCY
KEYPAD OFF / BRIGHTNESS ADJUST

Mode 1: TELESCOPE / OBJECT LIBRARY

Mode 2: COORDINATES / GOTO

COORDINATES

Displays RA and Dec. of current pointing position.

- Press ENTER to toggle between polar and alt-az coordiantes.
- Press MODE to exit.

GOTO
Press GOTO to enter a new pointing position.

- Enter new coordinates over blinking cursor. Use E and W keys to move cursor.
- Press ENTER to slew to the new coordinates.

Mode 3: CLOCK / CALENDAR

CLOCK
Displays both the current clock and sidereal times.
To set the clock

- To stop the clock Press-and-Hold ENTER
- Enter time digits over blinking cursor
- Press ENTER to synchronize clock with time signal.
- Press MODE to exit

CALENDAR

Mode 4: TIMER / FREQ
p.44-45

Mode 5: KEYPAD OFF / BRIGHTNESS ADJUST
rev. 4-24-99; 6-04-01

Manual p. 33

Objectives

1. Polar align the telescope using the equatorial wedge adjustment knobs.
2. Synchronize TELESCOPE with LIBRARY functions.
$\square \quad$ Insert guide eyepiece.
\square With power off, position the telescope:
Let DEC $=90^{\circ}$. (slow-motion knob may be used only when power is off.)
set H.A. $=00$ by rotating fork arms
ㅁ Switch power on.
Keypad LED's blink four times.
\square In TELESCOPE mode move to POLAR option and press ENTER.
Keypad responds with a beep.

Press ENTER again.
Telescope will slew to the precise off-set of Polaris.
Center Polaris using the wedge.
Press ENTER
The telescope will slew to an alignment star.
Center the star using the keypad.

Press ENTER to complete the initialization.
Keypad returns to TELESCOPE/LIBRARY mode.
\square Telescope is now polar aligned. All keypad functions are available.

Manual p. 34

Objective
Refine polar alignment using a variation of the POLAR option.
$\square \quad$ Initialize telescope with keypad as usual.
\square In TELESCOPE mode move to POLAR option

Press ENTER
Keypad responds with a beep.
Ignore the keypad instruction to set telescope.
Press GOTO
Telescope will point to Polaris.
Use the wedge to center Polaris.
Press ENTER (do not hold)
Telescope will choose and point to an alignment star.
Use keypad to center the star.
\square Press ENTER (do not hold)
To complete alignment routine.
Keypad returns to TELESCOPE / LIBRARY mode.

Each repetition more accurately polar aligns the telescope.
Repeat procedure in 15 -minute intervals to obtain desired accuracy.

Notes

1. To move star right in field, turn East Azimuth Screw counter clockwise.

Objective

Initialize telescope with keypad to use the Object Library functions.

Reference

List of alignment stars with their Mead or SAO numbers.

Equipment

Orion 12.5 mm illuminated reticle guide eyepiece

Set Up

(1) Align eyepiece reticle in $\mathrm{N}-\mathrm{S}, \mathrm{E}-\mathrm{W}$ directions in the field.
(2) Set the telescope clock within 5 seconds of CST. (Mode 3).
(3) Choose an alignment star nearest the meridian.

Procedure

\square Center the alignment star with the keypad controls.
\square Select POLAR menu option and press ENTER
\square Press STAR.

1. Enter the alignment Star Number and press ENTER
or
2. Press ENTER to select name option.

Scroll to star and press ENTER to select.
\square Press and Hold ENTER
until the display reads "coordinates matched."
\square Press MODE
to return to the Telescope / Library menu.
rev. 4-25-99, 5-9-99, 5-25-99, 6-12-99, 5-19-01

Objective

Change STAR key to accept SAO star catalogue numbers.

Procedure

\square Press STAR. Press ENTER.
\square Use Prev and Next keys to point to SAO.
\square Press ENTER to select SAO.
\square Press MODE to exit.

The STAR key now uses SAO star catalogue numbers.

Press CNGC

ENTER
PREV, NEXT to point to SAO
ENTER to check (select) database
MODE to exit
Press STAR and enter the SAO star number.
\square Set slew rate
From TELESCOPE menu

- Use NEXT to point to 10) slew rate
- Press ENTER until digit 4 appears ($4 \% / \mathrm{sec}$)

Press MODE to exit to TELESCOPE
Set clock ($\pm 5 \mathrm{sec}$. CST)
From TELESCOPE

- Press MODE twice
- Press and hold ENTER until keypad beeps

Enter digits, moving cursor with the W and E keys
Press ENTER when time is correct
Press MODE to exit
\square Center alignment star in eyepiece with keypad.
\square Select polar alignment.

- Select TELESCOPE

ENTER
NEXT, then ENTER
NEXT

If POLAR is not checked $(\sqrt{ })$, press ENTER

- Press MODE to return to TELESCOPE
\square Enter alignment star number
- Press STAR and enter number
- Press ENTER
- Press and Hold ENTER until keypad beeps (display reads 'Coordinates Matched')

Initialization is complete.

Notes

1. Low power illuminated reticle eyepiece is nearly same focal length as Meade 28 ? mm Or
2. Time accurate the nearest second can be obtained at http://www.boulder.nist.gov/
3. The RA of the meridian is displayed with Local Time in Mode 3 CLOCK / CALENDAR.

17	α Ari	$+23^{\circ}$
19	POLARIS	
20	Mira	-3°
33	Aldebaran	$+16^{\circ}$
41	Rigel	-8°

47	δ Ori	0°
56	Betelgeusse	$+7^{\circ}$
67	Sirius	-7°
78	Castor	$+32^{\circ}$
80	Procyon	$+5^{\circ}$
81	Pollux	$+28^{\circ}$
95	α Hya	-9°
100	Regulus	$+12^{\circ}$
114	Denebola	$+15^{\circ}$
905	Jupiter	
906	Saturn	

Notes

1. To select a file or an option means to press and release the Enter key. The LX200 will respond with a short beep tone and perform the action that you have requested (p.25).
2. Moving the LX200 Manually (p.25)

When the Power is Off, by unlocking the R.A. Lock the telescope may be turned rapidly through wide angles in right ascension. Fine adjustments are made by turning the R.A. slow motion control while the R.A. lock is in the "unlocked" position. DO NOT ATTEMPT TO MOVE THE TELESCOPE MANUALLY IN R.A. WHEN THE R.A. LOCK IS IN THE "LOCKED" POSITION. Do NOT attempt to operate the R.A. slow motion control knob with the telescope fully locked in R.A., as such operation may result in damage to the internal gear system.

Releasing the declination lock knob permits sweeping the telescope rapidly through wide angles in declination. To use the Manual Slow-Motion Knob, lock the telescope in declination and turn the Declination Slow-Motion Knob.

When the Power is On, the LX200 can be moved manually only with the R.A. and Dec. locks released. The manual Slow-Motion Knobs are non-functional when power is supplied to the telescope. Serious damage can occur to the internal gears of the motor assembly if a Manual Slow-Motion Knob is turned even a slight amount by hand. (p.18)

You will need:
Illuminated reticle eyepiece.

1) From TELESCOPE / LIBRARY menu select

TELESCOPE
ALIGN
POLAR (Instructions will appear on the Keypad display.)
2) Slew telescope to 90° in declination on the setting circle
3) Release RA lock and manually set HA to 0° Engage RA lock. Press ENTER. (The telescope will slew to Polaris.)
4) Center Polaris by moving Equatorial Wedge in altitude and/or azimuth. Press ENTER.
5) The telescope will slew to a bright star overhead. Center the bright star with the keypad Press ENTER. (Keypad returns to TELESCOPE / LIBRARY mode.)

The telescope is now polar aligned with library initialized.

Use ONLY THE KEYPAD to move the telescope.

Warning

Do not move the telescope in RA or Dec. either manually or with the slow motion knobs when these locks are engaged.

Serious damage will result to the drive gears.

c) REFINED POLAR ALIGNMENT

Use after initial polar alignment.
Need:
Square diagonal
Eyepieces:
Low power illuminated reticle eyepiece
12.5 mm illuminated reticle eyepiece.

Preparation:

Finder precisely aligned.
Forks level when telescope is at H.A. $=0^{\mathrm{h}} 00^{\mathrm{m}}$

Procedure

1) TELESCOPE / LIBRARY TELESCOPE

ALIGN
POLAR (Instructions appear on Keypad)
2) Ignore Keypad instructions.

Press GOTO
(Telescope will slew to the calculated position of Polaris.)
3) Adjust Equatorial Wedge to center Polaris.

Press ENTER
(The telescope will again slew to a bright star.)
4) Use keypad to center the bright star.

Press ENTER.

- Procedure may be aborted at any time by pressing MODE
- Repeat sequence every 15 minutes until the desired precision is attained.

Notes

- A precisely aligned finder makes job much easier to find and center Polaris.
- For drift method refer to Instruction Manual, page 61.

Discussion.

The accuracy of the drift method for polar alignment is independent of the most common telescope problems: accuracy of the star diagonal, centering of the cross hairs in the reticle eyepiece, intersection of the cross hairs on the optical axis, mirror shift ("flop") so notorious in SCT scopes, etc.

Another advantage is that adjustment of the polar axis in azimuth is made separately from that in altitude. One adjustment is made at a time; one set of locking bolts is loosened and tightened.

Further, adjustments are always made parallel to the cross hairs, which because of convenience, is less time consuming. This is generally not true of other methods.

Also, the scope is pointed in a direction during observing such that the observer can comfortably look through the eyepiece to assess the results and to make the necessary adjustment.

SETUP

\square Equipment

- Stopwatch, timer, or clock
- Star diagonal
- Orion 12.5 mm guide eyepiece
at f $/ 10$: mag. $=245 \mathrm{x}$; true field $=12 \operatorname{arcmin} ;$ box size $=14 \operatorname{arcsec}$.
$\square \quad$ Star diagonal:
- adjust perpendicular to declination axis.
\square Guide eyepiece:
- rotate so stars move parallel to cross hairs when using slow motion control.
\square Finder scope:
- rotate so stars move parallel to the cross hairs when using slow motion control.
- align so that a star in the guide eyepiece box is on the finder scope cross hairs.

AZIMUTH

$\square \quad$ Choose a star.

- use a 5-6 mag. star about 30 min . east of the meridian ($\mathrm{RA}=\mathrm{ST}+30^{\mathrm{m}}$) and within 5° of the equator.
- de-focus star image so that the dark center can be easily bisected with a cross hair.
- bisect dark center with a horizontal cross hair.
$\square \quad$ Check drift, ignoring drift in RA.
- if star drifts up: move star right in field by turning east wedge knob clockwise.
- if star drifts down: move star left in field by turning east wedge knob counter-clockwise.
$\square \quad$ Repeat until no drift is observed for at least 5 minutes (at 250x).
$\square \quad$ Secure the wedge in azimuth. Be careful not to change the pointing in azimuth!

ALTITUDE

Eastern horizon

$\square \quad$ Choose an equatorial star close to the eastern horizon (altitude $10^{\circ}+$).
$\square \quad$ Ignore drift in RA.

- if star drifts up: adjust altitude to move a meridian star down in field
- if star drifts down: adjust altitude to move a meridian star up in field
$\square \quad$ Repeat until no drift is observed for at least 5 minutes.
\square Secure the wedge in altitude. Be careful not to change the pointing in altitude or azimuth!
"an altitude error in the polar axis produces an east--west drift for objects which is greatest when they are near the meridian. An azimuth error produces an east--west drift that is greatest for objects at 6^{h} east and west of the meridian." Advanced Amateur Astronomy, North, Gerald. Edinburgh Univ. Press, 1991. p. 56

NOTES

1. The star should be de-focused so that the dark center can be easily bisected with a cross hair, but not so large that it is difficult to determine precisely the center of the image.
2. If you see drift in less than 5 seconds at 244 x , you are more than 10 or more eyepiece fields off in azimuth. Looking in the finder, give the azimuth a husky crank. If you do not see any drift for 30 seconds or so, you may be only 1 or 2 eyepiece fields off.
3. For altitude adjustment, choose an equatorial star close to the eastern horizon (altitude $10^{\circ}+$)
4. "an altitude error in the polar axis produces an east--west drift for objects which is greatest when they are near the meridian. An azimuth error produces an east--west drift that is greatest for objects at 6^{h} east and west of the meridian."

Advanced Amateur Astronomy, North, Gerald. Edinburgh Univ. Press, 1991. p. 56

Table 1

H.A.	Dec.	Drift up / down	Drift amount	Elapsed Time

c') DRIFT METHOD FOR PRECISE POLAR ALIGNMENT

Use only stars within 5° of the celestial equator.

AZIMUTH

Choose a star within 30 minutes of the meridian.

If the star drifts south, the axis is too far east.
If the star drifts north, the axis is too far west

ALTITUDE

Eastern horizon:

use a star 20° to 30° above the horizon, i.e. H.A. $=-3 \mathrm{~h}$ to -4 h

If star drifts south, axis is too low.
If star drifts north, axis is too high.

Western horizon:

use a star 20° to 30° above the horizon, i.e. H.A. $=+3 \mathrm{~h}$ to +4 h

If star drifts south, axis is too high.
If star drifts north, axis is too low.

In refractor or Cassegrain telescopes with standard 90° diagonal inserted at right angles to the declination axis directions in the field are as follows:

N
W E
S
Mode 3 Clock / Calendar
READ/SET CLOCK
(p.20)

The telescope clock should be set as accurately as possible to CST ($\pm 5 \mathrm{sec}$.), using the 24 hour format. Since the local time and date determine the sidereal time, the pointing accuracy of the telescope will depend on the accuracy of the clock.

Mode 3 CLOCK / CALENDAR (p.20)
To Read the Clock
\square From TELESCOPE / LIBRARY display

- Press MODE key twice

The display will show both standard and sidereal times.
Standard time should be within 5 seconds of CST
\square Press MODE key to exit.
To Set the Clock
\square Press and Hold ENTER key until keypad beeps

- Use the number keys to enter the current time within 5 seconds. Make corrections by moving the flashing cursor with W and E keys.
- Press ENTER key when the time is correct.
\square Press MODE key to exit.

Telescope Menu
SET SLEW RATE (p.37)

Slew Rate (TELESCOPE, option \#10)
A slew rate of $4 \mathrm{deg} / \mathrm{sec}$ is convenient for centering an object with CENTER speed.
To Set
\square From TELESCOPE menu

- Point to \rightarrow 10) Slew Rate
- Repeatedly press ENTER key until the digit 4 appears
\square Press MODE key to exit

1 Arcmin Pointing (p.36)
Normal pointing accuracy (p.36-37) is 5 arc-min or better; with critical alignment, 2 arc-min or better; with high precision pointing, 1 arc-min or better.

To Activate HP

- From TELESCOPE menu
- Move to \# 9 High Precision
- Press ENTER to toggle on / off When activated, "HIGH PRECISION" will appear in all upper case letters.
\square Press MODE to continue

To Use HP

\square Enter object as usual
\square Press GOTO
Telescope will slew to nearest alignment star
Keypad will display "Center star XXXX"
\square Center star in reticle eyepiece

- Press GOTO

Telescope will slew to selected object or position

Databases

1. SAO stars brighter than magnitude 7
2. UGC Uppsala General Catalogue of Galaxies
3. NGC New General Catalogue
4. IC Index Catalogue
5. GCVS General Catalogue of Variable Stars
6. LX200 Alignment Star Catalogue (351 stars)
7. Messier Catalogue
8. 8 Major Planets (accessed through STAR key and 901 through

Keypad power-up default catalogues:

- for STAR key is the LX200 alignment star catalogue.
- For CNGC key is the NGC catalogue.

To change STAR key to enter SAO star numbers:
Press CNGC
ENTER
PREV, NEXT to point to SAO
ENTER to check (select) database
MODE to exit
Press STAR and enter the SAO star number.

Three ways to use the Object Library:

1. Direct access by using the M, STAR, or CNGC keys and entering a number.
2. The START FIND option to logically find objects in strips of the sky.
3. The FIELD option to identify objects in the field of the telescope.

Select the OBJECT LIBRARY menu.
Move the LCD arrow to the desired menu by using the PREV and NEXT key.

1) OBJECT INFO

Press ENTER to read type, brightness, size, and quality of any entered object.
Press ENTER again to read coordinates
Press ENTER again to see how far telescope is pointing from the entered object.

2) START FIND

3) FIELD

Press FIELD

Press ENTER to identify objects in the field of the telescope. The display will show the number of NCG objects in the field and the object centered in the eyepiece field.
Press ENTER again to read information about the object

The above commands 1-3 can ben used

- any time you have an object entered in the keypad
- while directly entering objects with the M, STAR, or CNGC keys
- in the START FIND menu selection
- the FIELD menu selection

4) PARAMETERS

Keypad Control (p.34)
Need 1. Reticle eyepiece
2. Alignment star library number \& DEC.

Procedure

1) TELESCOPE

ALIGN
POLAR (press ENTER to place check)
2) Enter library number of alignment star.
3) Slew:

To DEC of star.
In RA to star.
4) Center star on eyepiece reticle.

Press and hold ENTER key until display reads 'Coordinates matched'.
Exit
Press MODE 3 times

All functions of telescope are ready for use.

Notes

- The alignment star should be within 30^{m} of the meridian and 10° of the equator. Refer to accompanying SC001 chart to choose a suitable star.
- "Move to" in reference to keypad means use PREV, NEXT keys only. "Select" means simply press ENTER key, or press PREV, NEXT keys, then press ENTER.

12-inch LX200 Journal

22 Oct 90 Thu

Meade Instruments Corporation
6001 Oak Canyon, Irvine, CAlifornia 92620
(949) 451-1450

FAX: (949) 451-1460
(949) 451-1450 11:30 am CDT
customer service: "One year old 12" LX200 with declination motor control problem. spoke to John Peiper (spelling?) in charge of LX200

- Moisture probably not the problem. Telescope would have to get really wet.
- Safe to remove declination lock knob by turning in release direction Remove "beauty cover"
- Two small pots on $3 / 4$ " square circuit board mounted on dec. motor May te "tweaked" with blade screwdriver to stop motor running.
- 30-day turn-around time if returned to factory
- Repair kit or swap part arrangement possible

12-inch Schmidt-Cassegrain
 Meade LX200
 12-inch SCT

Meade LX200

\rightarrow TELESCOPE
OBJECT LIBRARY

Dec.	Name	Star \#	SAO
$+19^{\circ}$	Arcturus	147	100944
$+27^{\circ}$	Alphecca	165	83893
$+09^{\circ}$	Altair	226	125122
$+10^{\circ}$	Enif	238	127029
$+15^{\circ}$	Markab	249	108378
$+23^{\circ}$	Hamal	17	75151
$+16^{\circ}$	Aldebaran	33	94027
$+07^{\circ}$	Betelgeuse	56	113271

F 04
S 05
S 05

SPRING	FALL	FALL	SPRING
2003	2002	2003	2003
LABS	LABS	LABS	LABS

ASTR
211
ASTR
ASTR
212
212

F 03
S 03
S 03

ASTR
211

- Power up the LX200.
- Set Clock (Mode 3; p.21)
- Set Slew Rate (TELESCOPE 10) SLEW RATE: 4 deg. / sec.; p.37)

Do not use the slow-motion knobs to move the telescope when the power
is on. Serious damage can occur to the drive gear system. (p. 17, p.18)
Manually here means:
2) Use N and S keys to slew to 90 degrees declination.
3) Release RA lock. Manually set HA to 00. Lock RA.

Press ENTER
Telescope will slew to Polaris.

Magnification required for an apparent separation of 10 minutes of arc:
$M=600 \mathrm{arcsec} /$ separation in arcsec
Focal length eyepiece for an apparent separation of 10 minutes of arc depends on the focal length of the telescope.

For 12-inch f/10 SCT
eyepiece focal length $=5 \times$ sep."
For $121 / 2$-inch Newtonian
eyepiece focal length $=3.2 \times$ sep."
7-26-99 Mon

Set clock (within 5 sec CST)
Use LX200 alignment star (named) to initialize keypad (12.5mm ill. ret.) Last focus: $\square \mathrm{cw} \square \mathrm{ccw}$ Date: CDT: star name: ST:
Check pointing: to SAO home: SAO west: Antares Alphecca Arcturus Alcaid Spica Denebola east: Vega Albireo Altair Deneb Enif Markab
\square Use SAO home star to initialize keypad (12.5mm ill. ret.)
Last focus: $\square \mathrm{cw}$CCW
Check pointing:
SAO star used:
west: Antares Alphecca Arcturus Alcaid Spica Denebola
east: Vega Albireo Altair Deneb Enif MarkabNova Aql 1999

Stars for Initializing Keypad

Dec.	Name *Star	Con.
+19	Arcturus *147	Boo
+27	Gemma *165	rB
+12	Rasalhague *200	h
+09	Altair *226	Aq
+10	Enif *238	Peg
+15	Markab *249	Peg
+23	Hamal *17	Ari
+16	Aldebaran *33	Tau
+07	Betelgeuse *56	Ori
+05	Procyon *80	CMi
+12	Regulus *100	-
+14	Denebola *114	Le

Open Clusters		
NGC869/884Per	4	
M 37	Aur	6
M 35	Gem	5
M 67	Cnc	6
M 23	Sgr	7
M 11	Sct	6

Globular Clusters

M3	Cvn	6
M 5	Ser	6
M 12	Oph	7
M 10	Oph	7
M 92	Her	6
M 22	Sgr	6

Bright Nebulae
M 42 Ori ?

Planetary Nebulae
NGC 2392 Gem 8

NGC 3242 Hya 9
M $57 \quad$ Lyr 9
M 27 Vul 8

Galaxies

M 81/82	Uma	8
M 104	Vir	9
M 51	CVn	8

Double Stars

$\xi(X i)$	UMa	*297	4,5	2.5
Y (Gamma)	Leo	*296	3,4	4.5 '
Y (Gamma)	Vir	*303	4,4	5"
24 Com	Com	*302	5,7	20"
α (Alpha)	CVn	*133	3,5	20"
ζ (Zeta)	UMa	*305	2,4	15"
ζ (zeta)	CrB	*318	5,6	$6 "$
16-17	Dra	SAO 30012	6,6,7	90"
ρ (Rho)	Her	*328	5,5	4"
v (Nu)	Dra	SAO 30447	5,5	62"
95 Her	Her	*329	5,5	$6 "$
θ (Theta)	Ser	SAO124068	4,5	23 "
€ (Epsilon)	Lyr	*334/5	5,5 5,6	
β (Beta)	Cyg	*223	3,5	35'

Y (Gamma)	Del	*342		4,5	10"		
61 Cyg	Cyg	*346		6,6	28 "		
α (Alpha)	Psc	*265		4,5	3"		
Y (Gamma)	Ari	*264		5,5	$9{ }^{\prime \prime}$		
32 Eri	Eri	*227		5,6	7"		
λ (Lambda)	Ori	*285		4,6	5.5"		
12 Lyn	Lyn	SAO	25939	5,6,8			
α (Alpha)	Gem	*78		2,3,10		60", 2"	blue/white/orange
ζ (Zeta)	Cnc	*293		6,6,6	6"	each yellow	320x
I (lota)	Cnc	SAO	80416	4,7	31"	orange/blue	

Double Stars Labeled on the Map (ST/May2000/p113)

Name	Const.	SAO	Star*	Sep.	Magnitudes
$\Sigma 1695$	UMa	2857	3.8"		
78 UMa	UMa	2860			
$\Sigma 25$	Dra	1608	179"		
Mizar	UMa	2873	(*305)	14.7"	
Mizar, Alcor	UMa	2875	(*305)	708"	
O $\sum 123$ AB	Dra	1607			
इ1770	Dra			1.8"	
к Воо	Boo	2881	13.4"		
$\Sigma 1829$	Boo			$5.6 "$	
। Boo AB	Boo	2907	38.7"		
$\Sigma 1871$	Boo	2924			
$\Sigma 1878$	Dra	1646			
$\Sigma 1882$ AB	Dra			11.5"	
$\Sigma 1927$	Dra	1663	17.3"		
O 2138 AB	Dra	1664	152"		
$\Sigma 1984$ AB	Dra	2969	6.4"		
$\Sigma 2006$ AC	Dra			46.5"	
$\Sigma 2054$ Aa-B	Dra	1707	0.9"		
η Dra AB	Dra	1707	4.8"		
16 \& 17 Dra	Dra	3001			
17 Dra AB	Dra	3001	3.2"		
20 Dra AB	Dra	1728	(*324)	1.1 "	

Celestron $35 \mathrm{~mm}\left(49^{\circ}\right)$ eye relief 25 mm

Stars for calibrating scope

Arcturus100944	+190 *147
Gemma	+270 *165
83893	
Rasalhague	+120 *200
102932	
Altair	+090 *226
125122	
Markab	+15 ${ }^{\circ}$ *249
108378	
Hamal	$+23^{\circ}$ *17
75151	
Aldebaran	+160 *33
94027	

Remove scope plastic cover
Replace finder lens cap with dew shield
Replace scope lens cap with dew shield add QuickFocus mask to dew shield
Prepare 12.5 mm ill ret eyepiece remove diagonal plug and align eyepiece with marks

Park Stars for LX200 to clear roof

Mead	\sim ST	Dec.	Name	
$*$ *136	1320	-36°	Iota Cen	
$* 141$	13	50	-42°	Mu Cen
$* 146$	14	00	-36°	Pi Hya
$* 149$	14	30	-42°	Eta Cen
$* 158$	15	00	-42°	Kappa Cen
$* 162$	15	20	-40°	Delta Lup
$* 166$	15	35	-41°	Alpha Lup
$* 171$	16	00	-22°	Delta Sco

