Starting from the usual force equation:

$$
\begin{equation*}
\ddot{r}=-G \frac{4}{3} \pi \rho r \tag{1}
\end{equation*}
$$

the energy density of blackbody light:

$$
\begin{equation*}
\rho_{\gamma}=u / c^{2}=\frac{4 \sigma T^{4}}{c^{3}} \tag{2}
\end{equation*}
$$

the usual scaling: $r=u R$ and how the light's temperature is affected by expansion:

$$
\begin{equation*}
T \longrightarrow \frac{T_{0}}{R} \tag{3}
\end{equation*}
$$

we have:

$$
\begin{align*}
& \ddot{R}=-\frac{G \frac{4}{3} \pi \rho_{\gamma}}{R^{3}} \tag{4}\\
& \frac{1}{2} \dot{R}^{2}=\frac{G 3}{3} \pi \rho_{\gamma} \tag{5}\\
& 2 R^{2}
\end{align*}
$$

where an integration constant has been taken as zero. If we include radiation pressure, this result is doubled. Combining this result with previous:

$$
\begin{equation*}
\dot{R}^{2}=\frac{G \frac{8}{3} \pi \rho_{\gamma}}{R^{2}}+\frac{G \frac{8}{3} \pi \rho_{m}}{R}+\frac{1}{3} \Lambda c^{2} R^{2} \tag{6}
\end{equation*}
$$

where ρ_{m} and ρ_{γ} are the NOW ($R=1$) values of mass and radiation density. Using the usual definitions

$$
\begin{align*}
H_{0} & =67.9 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc} \tag{7}\\
T_{0} & =2.725 \mathrm{~K} \tag{8}\\
\Omega_{\gamma} & =\frac{8 \pi G \rho_{\gamma}}{3 H_{0}^{2}}=\frac{8 \pi G 4 \sigma T_{0}^{4}}{3 c^{3} H_{0}^{2}}=5.4 \times 10^{-4} \quad \text { adding neutrinos } \rightarrow 8.4 \times 10^{-4} \tag{9}\\
\Omega_{m} & =\frac{8 \pi G \rho_{m}}{3 H_{0}^{2}}=.306 \tag{10}\\
\Omega_{\Lambda} & =\frac{\Lambda c^{2}}{3 H_{0}^{2}}=.694 \tag{11}
\end{align*}
$$

we get the general differential equation

$$
\begin{equation*}
\dot{R}^{2}=H_{0}^{2}\left(\frac{\Omega_{\gamma}}{R^{2}}+\frac{\Omega_{m}}{R}+\Omega_{\Lambda} R^{2}\right) \tag{12}
\end{equation*}
$$

In the early universe (say $R<.01$) we neglect the last term. Separating the resulting differential
equation

$$
\begin{align*}
\int_{0}^{R} \frac{d R}{\sqrt{\frac{\Omega_{\gamma}}{R^{2}}+\frac{\Omega_{m}}{R}}} & =H_{0} t \tag{13}\\
\int_{0}^{R} \frac{R d R}{\sqrt{\Omega_{\gamma}+\Omega_{m} R}} & =H_{0} t \tag{14}\\
\frac{2}{\Omega_{m}^{2}}\left[\frac{1}{3} X^{3 / 2}-\Omega_{\gamma} X^{1 / 2}\right]_{0}^{R} & =H_{0} t \tag{15}\\
\frac{2}{\Omega_{m}^{2}}\left\{\frac{1}{3}\left(\sqrt{\Omega_{\gamma}+\Omega_{m} R}\right)^{3}-\Omega_{\gamma} \sqrt{\Omega_{\gamma}+\Omega_{m} R}+\frac{2}{3} \Omega_{\gamma}^{3 / 2}\right\} & =H_{0} t \tag{16}\\
\frac{R^{2}}{2 \sqrt{\Omega_{\gamma}}}-\frac{\Omega_{m} R^{3}}{6 \Omega_{\gamma}^{3 / 2}}+\mathcal{O}\left(R^{4}\right) & =H_{0} t \tag{17}
\end{align*}
$$

In the last line the result has been series expanded to clearly show for early times

$$
\begin{equation*}
R \approx \sqrt{2 \sqrt{\Omega_{\gamma}} H_{0} t} \propto t^{1 / 2} \tag{18}
\end{equation*}
$$

```
Integrate[r/Sqrt[OmegaG+OmegaM r ],{r,0,R},GenerateConditions->False]
Series[%,{R,0,3}]
            OmegaM R 3
Out[4]= ------------- - ------------- + O[R]
```

out=\%\%/H0 /. \{OmegaM->.306, H0->1/14.4,OmegaG->. 000084$\}$
FindRoot [out==.00038, \{R, .001\}]

The last line allows finding R when $t=.00038$ (i.e., 380,000 years). Find z and $T=T_{0} / R$ at that time. This should be an improvement over the last homework result. Note from the choice of units for H_{0} we are using time in billions of years.

Matter and light carry equal weight when

$$
\begin{equation*}
\frac{\Omega_{\gamma}}{R^{2}}=\frac{\Omega_{m}}{R} \tag{19}
\end{equation*}
$$

When is that?
$t=3$ minutes is the time of nuclear synthesis; find R and T at that time.

