DSolve[{D[R[t],t]^2==H0^2 (OmegaM/R[t]+OmegaL R[t]^2),R[0]==0},R[t],t] FullSimplify[%[[4]],{H0>0,OmegaL>0,OmegaM>0,t>0}] OmegaM 1/3 3 H0 Sqrt[OmegaL] t 2/3 Out[3]= {R[t] -> (------) Sinh[-------------------] } OmegaL 2 R[t_]= R[t] /. % * set OL=.694 OM=.306 * let H0=67.9e3/(1e6*pc) * ? 1/H0/(1e9*year) 14.40078028934001 !Billion years * ? 3/2*H0*sqrt(OL) .2749731085385721E-17 * ? 1/res/(1e9*year) 11.52431260173826 !Billion years * ? (Om/OL)^(1/3) .7611214918829410 r[t_]=.7611 Sinh[t/11.52]^(2/3) FindRoot[r[t]==1,{t,14}] Out[20]= {t -> 13.8022} In[21]:= r[.00038] Out[21]= 0.000782662 In[22]:= 2.735/% Out[22]= 3494.48 In[23]:= 1/r[.00038] -1 Out[23]= 1276.69 Remark: T & z are a bit high, because t=.00038 is not 380,000 years after BB Recall that when light density dominates (at about 50,000 years), R(t) becomes steeper (t^(1/2) vs t^(2.3)) and so the BB actually happened after t=0, thus "380,000 years after BB" is t>380,000 years Better values would be z=1100, T=3000 K In our model r=1/(1101) happens at t=0.00048 * let rho=OM*(3*H0^2)/(8*pi*Gn) * ? rho .2650024392872864E-26 !(kg/m^3) * ? rho/mp 1.584353520686038 !(H atoms/m^3)