chapter 4 swihart problems: 2,5,6 in the old folder, find 364t199.pdf; do #9 #2 let vr=(2*pi*Rsun)/(26*24*3600) ? vr 1945.874295853293 ? 5000*vr/c .3245368994328225E-01 !(.03 A) ? 6e14*vr/c 3894442793.193870 !(3.9 GHz) #5 @constants.cal ? ry2 13.60569300900000 !Energy of n=3, He, electron in J let e3=ry2*e*2^2/3^2 !remaining KE from h*vu photon energy after e3 used to expell electron let ke=2e15*h-e3 ? sqrt(2*ke/me) 884562.0450812872 !(m/s) ? res/c .2950581382141665E-02 #6 flux = 2 pi h nu^3/c^2/(exp(x)-1) where x=h nu/(kT) note if we equate fluxes, lots of constants cancel we start with known values (n1 & n2) of h nu/k, and seek T=x for equality let n1=h*7.5e14/kb let n2=h*4.6e14/kb !interval which I'm searching for root: set xl=15000 xr=10000 root n1^3/(exp(n1/x)-1)-n2^3/(exp(n2/x)-1) Root between 10116.2719726562 and 10116.4245605469 364t199.pdf; do #9 n=1->n=2: find lambda & E n=1->n=infinity: find lambda n=2->n=3: find lambda & E n=2->n=infinity: find lambda & E (E=13.6 eV/2^2 is a give-me) n=200->n=201: find lambda & nu we have h nv = h c/lambda = change in ( RY/n^2 ) RY is the Rydberg constant (in J), which when expressed in eV is 13.6 (ry2) lambda= h c /(change in RY/n^2 ) ? ry2*(1/1^2-1/2^2) 10.20426975675000 !(eV) ? h*c/(ry*(1/1^2-1/2^2)) .1215022734129438E-06 !(1215 A) ? h*c/(ry*(1/1^2)) .9112670505970784E-07 !( 911 A) ? ry2*(1/2^2-1/3^2) 1.889679584583333 !(eV) ? h*c/(ry*(1/2^2-1/3^2)) .6561122764298964E-06 !(6561 A) ? h*c/(ry*(1/2^2)) .3645068202388313E-06 !(3645 A) ? h*c/(ry*(1/200^2-1/201^2)) .3672428938770315 !(m) ? (ry*(1/200^2-1/201^2))/h 816332903.9128616 ! (816 MHz)