Basic Optics: Radiance

Astronomy 525

Lecture 06

Outline

- The Radiance Theorem
- Basic Radiance
- Abbe’s Sine Condition
- Étendue
- Plate scales: re-imaging of pixel
- Reference: Boyd, R.W. "Radiometry and the Detection of Optical Radiation" 1983 John Wiley \& Sons, Inc. Chapters 2 and 5

Radiance Theorem

Let $d^{2} \Phi$ be the power (Watts) emitted into a solid angle $d \Omega$ by a source of element of projected area $\mathrm{dA}_{\text {proj }}$. Then, the radiance, L , is defined by:

$$
\mathrm{L}=\mathrm{d}^{2} \Phi /\left\{\mathrm{dA}_{\text {proj }} \mathrm{d} \Omega\right\}
$$

(W/m²/sr)

where:

$$
d A_{\text {proj }}=\mathrm{dA} \cos \theta
$$

The radiance is conserved through a loss-less optical system.

The power, $d^{2} \Phi$ transferred from $d A_{S}$ to $d A_{R}$ is:

$$
\begin{equation*}
\mathrm{d}^{2} \Phi=\mathrm{L}_{\mathrm{S}} \cdot\left(\mathrm{dA}_{\mathrm{S}} \cos \theta_{\mathrm{S}}\right) \mathrm{d} \Omega_{\mathrm{S}} \tag{3}
\end{equation*}
$$

By the definition of the radiance, L_{S}

Radiance Theorem: II

The radiance, L_{R} measured at $d A_{R}$ (in the same direction) is:

$$
L_{R}=d^{2} \Phi /\left\{d A_{R} \cos \theta_{R} d \Omega_{R}\right\}
$$

where $d \Omega_{R}$ is given by equation (2) above, since the flux leaves $d A_{R}$ in a solid angle equal to that from which it arrived.

Using equations (1), (2), and (3) above yields: $\quad L_{R}=L_{s}$

$$
\begin{aligned}
L_{R} & =\frac{d^{2} \Phi}{d A_{R} \cos \theta_{R} d \Omega_{R}}=\frac{d^{2} \Phi}{d A_{R} \cos \theta_{R} \frac{d A_{S} \cos \theta_{S}}{r^{2}}} \\
& =\frac{d^{2} \Phi}{d \Omega_{S} d A_{S} \cos \theta_{S}} \\
& =L_{S}
\end{aligned}
$$

Radiance Theorem: III

As a side result, we can show that it is possible to adopt the point of view of either the source or receiver when performing radiometric calculations.

Consider:

$$
\begin{aligned}
d^{2} \Phi & =L_{s}\left\{d A_{S} \cos \theta_{S}\right\} d \Omega_{S} \\
& =L_{S} \cos \theta_{S} d A_{S}\left\{d A_{R} \cos \theta_{R} / r^{2}\right\} \\
& =L_{S} d A_{R} \cos \theta_{R}\left\{d A_{S} \cos \theta_{S} / r^{2}\right\} \\
& =L_{S}\left\{d A_{R} \cos \theta_{R}\right\} d \Omega_{R}
\end{aligned}
$$

That is, we can think of the power we would measure in two ways:
(1) From the source point of view: $d^{2} \Phi \propto d A_{\text {proj }}$ (source) $d \Omega_{S}$
(2) From the receiver point of view: $d^{2} \Phi \propto d A_{\text {proj }}$ (receiver) $d \Omega_{R}$ of source

Suppose we have a beam of radiance, L, passing through a medium with refractive index N_{1}, falling onto $d A$ from solid angle $d \Omega_{1}$ inclined at θ_{1} w.r.t. dA , then the power passing through dA is given by:

$$
\mathrm{d}^{2} \Phi=\mathrm{L}_{1} \mathrm{dA} \cos \theta_{1} \mathrm{~d} \Omega_{1}
$$

We would like to find θ_{2} and Ω_{2} in terms of find θ_{1} and Ω_{1}. Using polar coordinates, with the axis normal to dA , we have:

$$
\begin{equation*}
\mathrm{d} \Omega_{1} / \mathrm{d} \Omega_{2}=\left(\sin \theta_{1} \mathrm{~d} \theta_{1} \mathrm{~d} \varphi_{1}\right) /\left(\sin \theta_{2} \mathrm{~d} \theta_{2} \mathrm{~d} \varphi_{2}\right) \tag{1}
\end{equation*}
$$

Basic Radiance: II

From Snell's law we have: $d \varphi_{1}=d \varphi_{2}$ (pick your plane of propagation) and $N_{1} \sin \theta_{1}=N_{2} \sin \theta_{2}$ so that (differentiating):

$$
N_{1} \cos \theta_{1} d \theta_{1}=N_{2} \cos \theta_{2} d \theta_{2}
$$

Using equation (1) above, we then have:

$$
\mathrm{d} \Omega_{1} / \mathrm{d} \Omega_{2}=\left(\mathrm{N}_{2} / \mathrm{N}_{1}\right)^{2}\left(\cos \theta_{2}\right) /\left(\cos \theta_{1}\right)
$$

The radiance of the refracted beam is then:

$$
\begin{aligned}
& \mathrm{L}_{2} \\
& =\mathrm{d}^{2} \Phi /\left(\mathrm{dA} \cos \theta_{2} \mathrm{~d} \Omega_{2}\right) \\
& =\mathrm{L}_{1} \mathrm{dA} \cos \theta_{1} \Omega_{1} /\left(\mathrm{dA} \cos \theta_{2} \Omega_{2}\right) \\
& =\mathrm{L}_{1} \cdot\left(\mathrm{~N}_{2} / \mathrm{N}_{1}\right)^{2} \\
\Rightarrow \quad & \mathrm{~L}_{1} I\left(\mathbf{N}_{1}\right)^{2}=\mathrm{L}_{2} /\left(\mathbf{N}_{2}\right)^{2}
\end{aligned}
$$

Basic Radiance：III

Intuitive Proof of the Basic Radiance Theorem：

$$
\mathrm{d}^{2} \Phi=\mathrm{L}_{1} \mathrm{~d} \Omega_{1} \mathrm{dA}=\mathrm{L}_{2} \mathrm{~d} \Omega_{2} \mathrm{dA}
$$

small angles on axis：$\quad \sin \theta \approx \theta \Rightarrow \mathrm{d} \Omega \propto \theta^{2}$

$$
\Rightarrow \mathrm{L}_{1} \theta_{1}^{2} \mathrm{dA} \approx \mathrm{~L}_{2} \theta_{2}^{2} \mathrm{dA}
$$

Snell＇s Law：$\quad N_{1} \theta_{1} \approx N_{2} \theta_{2} \Rightarrow N_{1} / N_{2} \approx \theta_{2} / \theta_{1}$ $\mathrm{L}_{1}\left(\theta_{1} / \theta_{2}\right)^{2}=\mathrm{L}_{2}$
or：

$$
\mathrm{L}_{1}\left(\mathrm{~N}_{2} / \mathrm{N}_{1}\right)^{2}=\mathrm{L}_{2}
$$

Abbe＇s Sine Condition：I

Suppose we have a source of height h_{1} in medium of index N_{1} ， imaged into medium N_{2} ．We will show that the image height is related to the source height by：

Abbe's Sine Condition: II

Mirror walled blackbody enclosures at
temperature, T .
Aperture images dA_{1} onto dA_{2}

Thermodynamic Proof:
By the radiance theorem, if the radiance of $d A_{1}$, measured in the medium with index N_{1} is $L_{0}\left(N_{1}\right)^{2}$, then the radiance of $d A_{2}$ measured into its surrounding medium must be $\mathrm{L}_{0}\left(\mathrm{~N}_{2}\right)^{2}$.

Now, dA_{1} radiates a power $\mathrm{d}^{2} \Phi$ into an annular element of solid angle with half angle α of: $\mathrm{d}^{2} \Phi=2 \pi \mathrm{~L}_{0}\left(\mathrm{~N}_{1}\right)^{2} \mathrm{dA}_{1} \cos \alpha \sin \alpha \mathrm{~d} \alpha$

Radiance theorem $/ \Omega$

Abbe's Sine Condition: III

Therefore, the total power transferred from $d A_{1}$ to $d A_{2}$ is:

$$
\mathrm{d} \Phi_{1}=\int_{0}^{\theta_{1}} \mathrm{~d}^{2} \Phi_{1}=\pi \mathrm{L}_{0}\left(\mathrm{~N}_{1}\right)^{2} \mathrm{~d} \mathrm{~A}_{1} \sin ^{2} \theta_{1}
$$

where θ_{1} is the half angle subtended by the aperture from the point of view of $d A_{1}$. Similarly, the power transferred from $d A_{1}$ to $d A_{2}$ is given by:

$$
\mathrm{d} \Phi_{2}=\int_{0}^{\theta_{2}} \mathrm{~d}^{2} \Phi_{2}=\pi \mathrm{L}_{0}\left(\mathrm{~N}_{2}\right)^{2} \mathrm{~d} \mathrm{~A}_{2} \sin ^{2} \theta_{2}
$$

By the second law of thermodynamics: $\quad \mathrm{d} \Phi_{1}=\mathrm{d} \Phi_{2}$
$\Rightarrow \quad N_{1} h_{1} \sin \theta_{1}=N_{2} h_{2} \sin \theta_{2}$
where h_{1} and h_{2} are the linear dimensions of A_{1} and A_{2}

Étendue：I

In general，the basic radiance，defined by：L / N^{2} of a narrow beam of radiation is conserved as the beam propagates through any loss－less optical system．（see Boyd，section 5．2）

Total Power Measurement（Boyd，section 5．5）

What is the total power transmitted by a perfectly transmitting optical system（i．e．no vignetting，absorption，etc．）？

The power is given by：

$$
\Phi=\iint L(\mathbf{r}, \mathbf{n}) d A \cos \theta d \Omega
$$

where $L(\mathbf{r}, \mathbf{n})$ is the source radiance of the point \mathbf{r} in the direction of unit vector \mathbf{n} ．The surface integral is over the entrance window，and the solid angle integral extends over the solid angle subtended by the entrance window．

Étendue：II

To characterize the properties of the optical system assume the source is uniform and Lambertian $\left(\mathrm{L}(\mathbf{n})=\mathrm{L}_{\mathrm{o}}\right)$ ，then：

$$
\begin{aligned}
\Phi= & \mathrm{L}_{\mathrm{o}} \iint \mathrm{dA} \cos \theta \mathrm{~d} \Omega \\
& =\mathrm{L}_{\mathrm{o}} /\left(\mathrm{N}_{0}\right)^{2} \boldsymbol{\varepsilon}
\end{aligned}
$$

where $N_{o}=$ the index of refraction，and

Lambertian source： one who＇s radiance is independent of the viewing angle．

$$
\begin{aligned}
& \varepsilon=\text { étendue of the system } \\
& \equiv \quad\left(\mathrm{N}_{\mathrm{o}}\right)^{2} \iint \mathrm{dA} \cos \theta \mathrm{~d} \Omega
\end{aligned}
$$

The étendue is a purely geometric quantity that is a measure of the flux gathering capability of the optical system．The collected power is the product of ε and the basic radiance of the source．

Étendue：III

Consider the optical system above．Suppose A_{0} ，the area of the source is small so that the solid angle subtended by the entrance pupil of the optical system does not change over the source．Then ：

$$
\varepsilon=\left(\mathrm{N}_{\mathrm{o}}\right)^{2} \mathrm{~A}_{0} \int \cos \theta \mathrm{~d} \Omega
$$

or：

$$
\varepsilon=\left(\mathrm{N}_{\mathrm{o}}\right)^{2} \mathrm{~A}_{\mathrm{o}} \Omega_{\mathrm{proj}, \mathrm{o}}
$$

where we define the projected solid angle by：

$$
\Omega_{\text {proj,o }}=\int \cos \theta \mathrm{d} \Omega
$$

Étendue：IV

Since the entrance pupil subtends a half angle θ_{0}

$$
\begin{aligned}
\Omega_{\text {proj, }, 0} & =\int_{0}^{\theta} 2 \pi \sin \theta \cos \theta d \theta \\
& =\pi\left(\sin ^{2} \theta_{0}\right)
\end{aligned}
$$

and hence：

$$
\varepsilon \quad=\pi\left(N_{0}\right)^{2} A_{0} \sin ^{2} \theta_{0}
$$

Now，recall that $\mathrm{Nh} \sin \theta$（ $\mathrm{h}=$ height of the object／image）is conserved between the object and image in a well corrected imaging system （Abbe＇s sine condition）．Therefore，the étendue is invariant between the image and object planes．

Étendue: V

More generally, consider an element of the étendue:

$$
\mathrm{d}^{2} \varepsilon=\mathrm{N}^{2} \mathrm{dA} \cos \theta \mathrm{~d} \Omega
$$

If we also consider the flux passing through the same element of area into the same solid angle, and in the same direction:

$$
\mathrm{d}^{2} \Phi=\mathrm{L} d \mathrm{~A} \cos \theta \mathrm{~d} \Omega
$$

Which yields:

$$
\mathrm{d}^{2} \Phi=\mathrm{L} /(\mathrm{N})^{2} \cdot \mathrm{~d}^{2} \varepsilon
$$

Now, in any loss-less system, by conservation of energy, $d^{2} \Phi$ is conserved. We also have by the general form of the radiance theorem, that $\mathrm{L} /(\mathrm{N})^{2}$ is invariant. Hence, $\mathrm{d}^{2} \varepsilon$ must be invariant. We have then, that:

$$
\boldsymbol{\varepsilon}=\iint \mathrm{d}^{2} \boldsymbol{\varepsilon}=\mathrm{N}^{2} \iint \mathrm{~d} \mathrm{~A} \cos \theta \mathrm{~d} \Omega
$$

is conserved. The étendue can be evaluated over any surface that intersects all the rays passing through the system.

Étendue: VI

The invariance of étendue forms the basis for our usual statement that:

$$
\mathrm{A} \Omega=\text { constant }
$$

in an optical system. Keep in mind, however, that this expression is not the most general form.
The fact that $A \Omega$ is conserved provides a very powerful tool for optical system design.

Example:

But, since f\# = f/D $\approx 1 / \theta$

Radiance

$$
\Rightarrow \mathrm{d}_{1} / f \#_{1}=\mathrm{d}_{18} / \mathrm{f} \#_{2}
$$

Plate Scale：I

Consider the case where we wish to match the image size from a telescope to the size of a pixel in a CCD camera．

For the Palomar telescope，with an $f / 15.7$ secondary，the plate scale is given by：

$$
\begin{aligned}
\mathrm{x}_{\mathrm{T}} \quad & =\mathrm{f}_{\mathrm{T}} \cdot \mathrm{D}_{\mathrm{T}} \cdot \theta_{\mathrm{S}} \\
& =1^{\prime \prime} / 206,265^{\prime \prime} / \text { radian } \times 5000 \mathrm{~mm} \times 15.7 \\
& =0.387 \mathrm{~mm} \text { for } 1 " \\
& \Rightarrow \text { plate scale }=2.6^{\prime \prime} / \mathrm{mm}
\end{aligned}
$$

Thus，to cover 0.5 ＂with a＂pixel＂，we need a detector with is $193 \mu \mathrm{~m}$ across．

Plate Scale：II

Typical CCD＇s have pixels $\sim 25 \mu \mathrm{~m}\left(\mathrm{x}_{\mathrm{d}}\right)$ across，so that we need to re－ image to obtain the correct plate scale．From our relation $A \Omega=$ constant，we can easily determine the $\mathrm{f}^{\#}{ }_{c}$ of the final optical stage （camera）．

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}}^{\#} & =x_{\mathrm{d}} / \mathrm{x}_{\mathrm{T}} \cdot \mathrm{f}_{\mathrm{T}} \\
& =25 / 193 \cdot 15.7 \\
& =2.0!!\text { (a very fast camera!) }
\end{aligned}
$$

Note：

$$
\begin{aligned}
x_{T} & =\theta_{S} f_{T} \cdot D_{\mathrm{F}} \\
\Rightarrow \quad f_{c}^{\#} & =x_{d} /\left(\theta_{S} \mathrm{D}_{\mathrm{T}}\right)
\end{aligned}
$$

i．e．，we get the desired ${ }^{\ddagger}$＂of the final camera in terms of the plate scale desired，and the primary aperture．

Plate Scale：III

It is often useful to match the diffraction spot from the telescope to the size of the detector．This is relevant for diffraction limited（not seeing limited）observations．For diffraction from a filled aperture，the full width，at half maximum of the beam is given by：

$$
\theta_{\text {diff }}=1.22 \lambda / D_{T}
$$

Where D is the size of the primary mirror．
Therefore，since $d=\theta \mathrm{f} \mathrm{\#} \cdot \mathrm{D}$ ，we have

$$
\begin{aligned}
\mathrm{d}_{\text {diff }} & =1.22 \lambda / \mathrm{D}_{\mathrm{T}} \cdot f \#_{\mathrm{T}} \cdot \mathrm{D}_{\mathrm{T}} \quad \text { " } \lambda \cdot f \text { p pixels" } \\
& =1.22 \lambda \cdot f \#_{\mathrm{T}}
\end{aligned}
$$

For the visible，$\lambda=0.5 \mu \mathrm{~m}$ ：

$$
\begin{aligned}
\mathrm{d}_{\text {diff }} & =1.22 \cdot 0.5 \cdot 2.0 \\
& =1.2 \mu \mathrm{~m}
\end{aligned}
$$

Therefore，the pixel size is large compared with the diffraction limit in this case．

Plate Scale：IV

At longer wavelengths，it is often possible to obtain the diffraction limited images．For example，the Hale 5 m telescope is diffraction limited at $\lambda>10 \mu \mathrm{~m}$ ，and approaches the diffraction limit for $\lambda>2 \mu \mathrm{~m}$ if adaptive optics or speckle techniques are used．To obtain the diffraction limit in a single exposure，one needs to sample the focal plane at the Nyquist frequency： 2 pixels per diffraction limited beam：

$$
\begin{aligned}
& \theta_{\text {diff }}=1.22 \lambda / D_{T} \\
& \Rightarrow \mathrm{f}^{\#}{ }_{\mathrm{c}}=\mathrm{d}_{\text {diff }} /\left(\theta_{\text {diff }} / 2 \cdot \mathrm{D}_{\mathrm{T}}\right) \\
& \Rightarrow \mathrm{f}^{\#}{ }_{\mathrm{c}}=\mathrm{d}_{\text {diff }} /(1.22 \lambda / 2) \quad \text { " } \lambda \cdot \mathrm{f} \text { over } 2 \text { pixels" }
\end{aligned}
$$

final f\＃

$$
\rightarrow \mathrm{C}_{\mathrm{C}}^{\mathrm{t}} \mathrm{C}_{\mathrm{dij}} /(0.61 \lambda) \quad \text { pixel size }
$$

Spectrocam－10 on the Hale 5 m telescope has $75 \mu \mathrm{~m}$ square pixels， and is designed to fully sample the focal plane at $10 \mu \mathrm{~m}$ ．The final $\mathrm{f}^{\#}$ must therefore be：

$$
\mathrm{f}_{\mathrm{c}}^{\mathrm{c}}=75 \mu \mathrm{~m} /(0.61 \cdot 10 \mu \mathrm{~m})=4.5
$$

