
A525: Lecture - 06

1

Basic Optics: Radiance

Astronomy 525

Lecture 06
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Outline
The Radiance Theorem
Basic Radiance
Abbe’s Sine Condition
Étendue
Plate scales:  re-imaging of pixel

Reference: Boyd, R.W. “Radiometry and the 
Detection of Optical Radiation”  1983 John Wiley 
& Sons, Inc.   Chapters 2 and 5
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Radiance Theorem

dA
θ

dAproj

dΩ

Let d2Φ be the power (Watts) emitted into a solid angle dΩ by a 
source of element of projected area dAproj. Then, the radiance, L, 
is defined by:

L = d2Φ/{dAproj dΩ} (W/m2/sr)
where:

dAproj = dA cosθ
Units of 
intensity
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Radiance Theorem: I
The radiance is conserved through a loss-less optical system.

dΩS =  solid angle of dAR at dAS
=  {dAR· cos θR}/r2 (1)

dΩR =  solid angle of dAS at dAR
=  {dAS· cos θS}/r2 (2)

The power, d2Φ transferred from dAS to dAR is:

d2Φ =  LS· (dAS cos θS) dΩS (3)

By the definition of the radiance, LS

Source Receiver
θS

θR

dAS dAR
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Radiance Theorem: II

The radiance, LR measured at dAR (in the same direction) is:

LR =  d2Φ/{dAR cos θR dΩR}

where dΩR is given by equation (2) above, since the flux leaves dAR

in a solid angle equal to that from which it arrived.

Using equations (1), (2), and (3) above yields:     LR = LS
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Radiance Theorem: III

As a side result, we can show that it is possible to adopt the point 
of view of either the source or receiver when performing 
radiometric calculations.

Consider:
d2Φ = LS{dAS cos θS} dΩS

= LS cos θS dAS {dAR cos θR/r2}
= LS dAR cos θR{dAS cos θS/r2}
= LS{dAR cos θR} dΩR

That is, we can think of the power we would measure in two ways:

(1) From the source point of view:    d2Φ ∝ dAproj (source) dΩS

(2) From the receiver point of view: d2Φ ∝ dAproj (receiver) dΩR

of receiver

of source



A525: Lecture - 06

4

A525 – Lecture 06Radiance 7

Basic Radiance:  I

Suppose we have a beam of radiance, L, passing through a medium 
with refractive index N1, falling onto dA from solid angle dΩ1 inclined at 
θ1 w.r.t. dA, then the power passing through dA is given by:

d2Φ = L1dA cos θ1 dΩ1

We would like to find θ2 and Ω2 in terms of find θ1 and Ω1.  Using polar 
coordinates, with the axis normal to dA, we have:

dΩ1/ dΩ2  = (sin θ1 dθ1dϕ1)/(sin θ2 dθ2dϕ2) (1)

dA

dΩ2

dΩ1

θ2

θ1

N1 N2ϕ

L1/(N1)2 = L2/(N2)2
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Basic Radiance:  II

From Snell’s law we have: dϕ1 = dϕ2 (pick your plane of propagation)
and N1 sin θ1 = N2 sin θ2

so that (differentiating):
N1 cos θ1dθ1 = N2 cos θ2 dθ2 

Using equation (1) above, we then have:

dΩ1/ dΩ2  = (N2/N1)2 (cos θ2)/(cos θ1)

The radiance of the refracted beam is then:
L2 = d2Φ/(dA cos θ2 dΩ2)

= L1 dA cos θ1 Ω1/(dA cos θ2 Ω2)
= L1·(N2/N1)2

⇒ L1/(N1)2 = L2/(N2)2
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Basic Radiance:  III

Intuitive Proof of the Basic Radiance Theorem:  

d2Φ = L1 dΩ1 dA = L2 dΩ2 dA

small angles on axis: sin θ ≈ θ ⇒ dΩ ∝ θ2

⇒ L1 θ1
2 dA ≈ L2 θ2

2 dA

Snell’s Law: N1θ1 ≈N2θ2   ⇒ N1/N2 ≈ θ2/θ1

L1(θ1/θ2)2 = L2

or: L1(N2/N1)2 = L2
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Abbe’s Sine Condition:  I

N1 N2

θ1 θ2h1
h2

Optical 
System

Suppose we have a source of height h1 in medium of index N1, 

imaged into medium N2.  We will show that the image height is 

related to the source height by:

N1h1sin θ1   =  N2h2sin θ2
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Abbe’s Sine Condition:  II

θ1 θ2

dA1 dA2

N1 N2

Mirror walled blackbody 
enclosures at 
temperature, T.  

Aperture images dA1
onto dA2

Thermodynamic Proof:   
By the radiance theorem, if the radiance of dA1, measured in the 
medium with index N1 is Lo(N1)2, then the radiance of dA2 measured 
into its surrounding medium must be Lo(N2)2.  

Now, dA1 radiates a power d2Φ into an annular element of solid angle 
with half angle α of:   d2Φ = 2πLo(N1)2dA1 cosα sinα dα

Radiance theorem/Ω
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Abbe’s Sine Condition:  III

Therefore, the total power transferred from dA1 to dA2 is:

dΦ1 = ∫ d2Φ1 = πLo(N1)2dA1 sin2θ1

where θ1is the half angle subtended by the aperture from the point of 
view of dA1.  Similarly, the power transferred from dA1 to dA2 is given 
by:

dΦ2 = ∫ d2Φ2 = πLo(N2)2dA2 sin2θ2

By the second law of thermodynamics: dΦ1 =  dΦ2

⇒ N1h1sin θ1= N2h2sin θ2

where h1 and h2 are the linear dimensions of A1 and A2

θ1

0

0

θ2
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Étendue: I

In general, the basic radiance, defined by: L/N2 of a narrow beam of 
radiation is conserved as the beam propagates through any loss-less 
optical system.  (see Boyd, section 5.2)

Total Power Measurement (Boyd, section 5.5)

What is the total power transmitted by a perfectly transmitting optical 
system (i.e. no vignetting, absorption, etc.)?  

The power is given by:

Φ = ∫ ∫ L(r,n) dA cosθ dΩ
where L(r,n) is the source radiance of the point r in the direction of unit 
vector n.  The surface integral is over the entrance window, and the 
solid angle integral extends over the solid angle subtended by the 
entrance window.
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Étendue: II
To characterize the properties of the optical system assume the source 
is uniform and Lambertian (L(n) = Lo), then:

Φ = Lo ∫ ∫ dA cosθ dΩ

= Lo/(No)2 ε
where No = the index of refraction, and 

ε = étendue of the system

≡ (No)2 ∫ ∫ dA cosθ dΩ

The étendue is a purely geometric quantity that is a measure of the flux 
gathering capability of the optical system.  The collected power is the 
product of  ε and the basic radiance of the source.  

power = étendue · radiance

area·solid angle   intensity (W/m2/sr)

Lambertian source:
one who’s radiance is 
independent of the 
viewing angle.
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Étendue: III

Consider the optical system above.  Suppose Ao, the area of the 
source is small so that the solid angle subtended by the entrance pupil 
of the optical system does not change over the source.  Then :

ε = (No)2 Ao ∫ cosθ dΩ
or:

ε = (No)2 Ao Ωproj, o

where we define the projected solid angle by:

Ωproj,,o =∫ cosθ dΩ

Ao
A1

θ1θo

θ

No N1
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Étendue: IV

Since the entrance pupil subtends a half angle θo

Ωproj,,o =∫ 2π sinθ cosθ dθ
= π (sin2 θo) 

and hence:

ε = π (No)2 Ao sin2 θo

Now, recall that Nh sinθ (h = height of the object/image) is conserved 
between the object and image in a well corrected imaging system 
(Abbe’s sine condition).  Therefore, the étendue is invariant between 
the image and object planes.

θ0

0
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Étendue: V

More generally, consider an element of the étendue:

d2ε = N2 dA cosθ dΩ
If we also consider the flux passing through the same element of area 
into the same solid angle, and in the same direction:

d2Φ = L dA cosθ dΩ
Which yields:

d2Φ = L/(N)2 · d2ε
Now, in any loss-less system, by conservation of energy, d2Φ is 
conserved.  We also have by the general form of the radiance theorem, 

that L/(N)2 is invariant.  Hence, d2ε must be invariant.  We have then, 
that:

ε = ∫∫ d2ε = N2 ∫∫ dA cosθ dΩ
is conserved.  The étendue can be evaluated over any surface that 
intersects all the rays passing through the system.
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Étendue: VI

The invariance of étendue forms the basis for our usual statement that:
AΩ = constant

in an optical system.  Keep in mind, however, that this expression is 
not the most general form.
The fact that AΩ is conserved provides a very powerful tool for optical 
system design.

Example:

AΩ = constant ⇒ A1Ω1 = A2Ω2 where A = π/4 d2, and  Ω = π/4 θ2

⇒ d1 θ1 = d2 θ2

But, since f# = f/D ≈ 1/θ

⇒ d1/f#1 = d2/f#2

θ2
A2θ1

A1
Optical 
System
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Plate Scale: I
Consider the case where we wish to match the image size from a 
telescope to the size of a pixel in a CCD camera.

For the Palomar telescope, with an f/15.7 secondary, the plate scale is 
given by:

xT = f#T · DT · θs

= 1”/206,265”/radian x 5000 mm x 15.7 
= 0.387 mm for 1”
⇒ plate scale = 2.6”/mm

Thus, to cover 0.5” with a “pixel”, we need a detector with is 193 μm 
across.

D

f# · D

x

θ
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Plate Scale: II

Typical CCD’s have pixels ~ 25 μm (xd)across, so that we need to re-
image to obtain the correct plate scale.  From our relation AΩ = 
constant, we can easily determine the f#c of the final optical stage 
(camera).

f#c = xd/xT·f#T

= 25/193 ·15.7 
= 2.0!! (a very fast camera!)

Note:  xT = θs f#T·DT

⇒ f#c = xd/(θs·DT)

i.e., we get the desired f# of the final camera in terms of the plate scale 
desired, and the primary aperture.

Focal length, f

1/(plate scale)
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Plate Scale: III

It is often useful to match the diffraction spot from the telescope to the 
size of the detector.  This is relevant for diffraction limited (not seeing 
limited) observations.  For diffraction from a filled aperture, the full 
width, at half maximum of the beam is given by:

θdiff = 1.22 λ/DT

Where D is the size of the primary mirror.
Therefore, since d = θ f#·D, we have 

ddiff = 1.22 λ/DT·f#T·DT

= 1.22 λ·f#T

For the visible, λ = 0.5 μm:
ddiff = 1.22 · 0.5 · 2.0 

= 1.2 μm
Therefore, the pixel size is large compared with the diffraction limit in 
this case.

“λ·f pixels”
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Plate Scale: IV
At longer wavelengths, it is often possible to obtain the diffraction 
limited images.  For example, the Hale 5 m telescope is diffraction 
limited at λ >10 μm, and approaches the diffraction limit for λ >2 μm if 
adaptive optics or speckle techniques are used.  To obtain the
diffraction limit in a single exposure, one needs to sample the focal 
plane at the Nyquist frequency: 2 pixels per diffraction limited beam:

θdiff = 1.22 λ/DT

⇒ f#c = ddiff/(θdiff/2·DT)
⇒ f#c = ddiff/(1.22 λ/2)

f#c = ddiff/(0.61λ)
Spectrocam-10 on the Hale 5 m telescope has 75 μm square pixels, 
and is designed to fully sample the focal plane at 10 μm.  The final f#

must therefore be: 
f#c = 75 μm/(0.61·10 μm) = 4.5

pixel size

“λ·f over 2 pixels”
final f#


