Introduction to spj

spj is an odd combination of spreadsheet program and MINITAB. It is at its best when you want to perform exactly the same set of operations on many different "rows" of data, e.g., if you want to calculate the error for each of several data points. Like plot, spj uses the prompt "*" to request, from the user, commands for action.

A typical spj session begins by using the editor to create a data file. Follow the usual convention in creating the data file: reserve the first line of the file for an identifying sentence, follow that line with columns of data separated by tabs or spaces or commas.

Once you have created the file, start spj by typing

% spj

(At any time you may exit spj by holding down the Ctrl key and simultaneously hitting D.) SET spj’s FILE variable equal to the filename of the file that contains your data.

* SET FILE=filename

You now must READ your data file into spj’s internal data storage area. spj’s internal storage area is divided up into 30 columns of data, with at most 512 rows of data in each column. (If you need more rows, contact Dr. Kirkman for some tricks.) Thus you must specify where each column of your file belongs in spj’s memory. To read the first four columns of data in your file into spj’s first four columns of memory type:

* READ C1-C4 TO C1-C4

Other arrangements might also be made. For example,

* READ C4,C1-C3 TO C11-C14

places the fourth column in the file into spj’s eleventh column and file-columns one to three in spj-columns twelve through fourteen. Notice that no data are displayed on the screen. spj displays data only if you request it, e.g.,

* PRINT C11-C13

will display data on the terminal—the first column on the screen will be spj’s internal C11. To WRITE a file from spj’s memory, tell spj the filename you want to create and then ask it to WRITE the columns you want in the file (in the order you want them in the file):

* SET FILE=filename
* WRITE C3,C4,C1

In this example, C3,C4,C1 is the “clist”, i.e., the set of columns you want to appear in the file; the first column in the file will be C3, the second C4, etc.

Typically, you will want to modify the READ in data before you WRITE the data. The most powerful data modifying command is LET Cx=expression. (Unlike most BASICs the LET is not optional.) The expression consists of any valid combination of operations (+, -, *, /, **) or ", note: (-2)**3=|−2|³ = 8), column numbers (C1-C30), constants (e.g., 365.25, 6.02E23), variables (A,B,C,X,Y,Z),
parenthesis, and functions. (All fortran, single-real-argument functions (abs, acos, asin, atan, cos, cosh, exp, int, log, log10, nint, sin, sinh, sqrt, tan, and tanh) are valid, plus
INORM, K, NORM, PI, RAN, ROW, and WINDOW. RAN produces “random” numbers; ROW has a value
equal to the row number; WINDOW(z) has the value 1 if a ≤ x < b, 0 otherwise.) Thus

* let c4=(-c2+sqrt(c2^2-4*c1*c3))/(2*c1)
* let c5=(180/pi)*asin(c1/2.03)

are valid statements.

There are five commands designed to produce statistical information. CSTAT reports sum, mean,
standard deviation, maximum and minimum for a single column of data. The other four operate on
several columns of data, producing a MAX, MEAN, MIN or SDEV for each row of data. For example,

* MEAN C1-C3, C5 TO C6

will, for each row, find the mean of the four specified numbers and put the result in C6.

There are three special purpose commands. FIT Cx,Cy finds a least-squares line through the specified
columns of data. SORT will sort a single column of data, highest-to-lowest. TO another column. ? is
a handy calculator, allowing you to evaluate an expression. So if you need to know the value of π,
just type

* ? pi/2

and the answer will immediately appear. (Column references in the expression will be evaluated
using the IBEGIN row.)

Thus, spj’s command set includes: ?, CSTAT, FIT, HELP, LET, MAX, MEAN, MIN, PRINT, READ,
SDEV, SET, SHOW, SORT, and WRITE.

Perhaps the most useful variable is CFORM, which is the fortran real-variable format the program
will use to PRINT or WRITE column data. As may be found in a fortran language reference manual,
formats for real numbers usually have the form: [F, E, or G]width.decimal, e.g., F5.2. Thus you can
request a shorter width for each real number PRINTed, allowing more real numbers to be displayed.
In addition to working with numerical data, spj has two columns of 32-character, alpha-numeric
data available: L1 and L2. LFORM is used to format this literal data. The typical form is Awidth,
e.g., A10.

You can also SET values for the expression variables: A, B, C, X, Y and Z.

IBEGIN and NROW determine the first row used in the internal storage area and the total number
of rows used. Do not mistake NROW and ROW. ROW is the number of lines of text skipped before the
program READs in the columns.

Special Commands

Start: % spj
$ UNIX command — do any UNIX command from inside spj
@filename — execute indirectly a file of spj commands
Ctrl D — to exit program
Examples:

* $ ls *.dat
* @fet.spj
spj Commands
(unambiguous abbreviations and lowercase allowed)

? expression immediate calculation, Cx ibegin) used if Cx value requested
CSTAT Cx report sum, mean, sdev, min, max for column Cx
FIT Cx,Cy report slope, yinter, r for linear least-squares fit Cx=x, Cy=y
HELP print this file
LET Cx = expression assign the value of expression to column Cx
MAX clist TO Cx find maximum of columns in clist, put result in Cx
MEAN clist TO Cx find mean of the columns in clist, put result in Cx
MIN clist TO Cx find minimum of columns in clist, put result in Cx
PRINT list display on terminal the list shown, in order shown
READ filelist TO spjclist transfer columns of data in FILE to spj
SDEV clist TO Cx find sdev of columns in in clist, put result in Cx
SET variable=value change internal variable values
SHOW report internal variable values
SORT Cx TO Cy sort the single column Cx, put result in Cy
USER link in your own data manipulator
WRITE list write to file the list shown, in order shown

where column stores real data (C30 max); label stores word data (L2 max); Cx, Cy are particular column names e.g., C21; clist is a list of columns e.g., C1,C2,C4-C9; list is a list of columns and labels e.g., L1,C3,C2; an expression is a combination of the operations: -, +, *, /, ** or ^, parenthesis, variables (a, b, c, x, y, z), constants, functions (abs, acos, asin, atan, cos, cosh, exp, inorm, int, k, log, log10, nint, norm, pi, ran, row, sin, sinh, sqrt, tan, tanh, and window) and column names.

Examples:

* LET C1 = ROW/30*PI
* LET c2=(c1-sin(c1))
* LET c3=cos(c1)-1
* SET FILE=cycloid.dat
* write c2,c3
Variables

A used with **LET**; a named constant in an expression (0)
B same (Note: A&B are used in function **WINDOW(X)** which has value 1 if $a \leq x < b$)
C same
CFORM used in **PRINT** and **WRITE**; fortran format for real numbers (g)
FILE used with **READ** and **WRITE**; determines what file is used (data.spj)
IBEGIN used in all stat ops; beginning row number for operation (1)
LFORM used in **PRINT** and **WRITE**; fortran format for label (a23)
MEAN reports most recent mean after **CSTAT** (0)
NROW number of valid rows in program (max 100) (100)
R linear-correlation coefficient for most recent **FIT** (0)
ROW used in **READ**; first valid row of data in file (2)
SUM reports most recent sum after **CSTAT** (0)
SDEV reports most recent sdev after **CSTAT** (0)
SLOPE reports most recent slope after **FIT** (0)
X same as A
Y same
YINTER reports most recent yinter after **FIT** (0)
Z same as A