compare equant & kepler models for planet going around sun. Seek the angle from sun to planet as a function of time, particularly difference in angle equant model needs cases for tan=0 or infinity and sign of tan equant model: circle with sun displaced e on one side and the uniform motion point ("equant") displaced e on the other side Here we follow orbit phi=0,Pi The difference looks like a nice sinusoidal at twice the orbital frequency and an amplitude propto e^2 uu=Table[0,{51}] qq=Table[0,{51}] pp=Table[0,{51}] rr=Table[{0,0},{51}] eEarth=.0167 eMars=.0934 Do[ uu[[i]]= u /. FindRoot[u-e Sin[u] == .02 Pi (i-1),{u,.02 Pi (i-1) }] ; rr[[i,1]]= (Cos[uu[[i]]]-e) ; rr[[i,2]]= Sqrt[1-e^2] Sin[uu[[i]]]; pp[[i]]=ArcTan[rr[[i,1]],rr[[i,2]]]; t=Tan[.02 Pi (i-1)]; cs=Sin[.02 Pi (i-1)] Cos[.02 Pi (i-1)]; If[i==26, rr[[i,2]]=Sqrt[1-e^2]; rr[i,1]]=-2 e]; If[i<26, rr[[i,2]]=cs( e + Sqrt[1 + t^2(1 - e^2)]); rr[i,1]]=rr[[i,2]]/t-2 e]; If[i>26, rr[[i,2]]=cs( e - Sqrt[1 + t^2(1 - e^2)]); rr[i,1]]=rr[[i,2]]/t-2 e]; If[i == 1, rr[[1, 1]] = 1 - e]; qq[[i]]=ArcTan[rr[[i,1]],rr[[i,2]]] , {i,51}] Max[qq - pp] .01 0.0000244855 .02 0.0000961244 .03 0.000212287 .04 0.00037047 .05 0.000568293 .06 0.000803493 A = 0.1957 0.45E-02 B = 1.949 0.65E-02 Solve[(y/t-e)^2+y^2==1,y] {{y -> (e/t - Sqrt[1 + t^2 - e^2*t^2]/t)/(1 + t^(-2))}, {y -> (e/t + Sqrt[1 + t^2 - e^2*t^2]/t)/(1 + t^(-2))}} 1+1/t^2= 1/s^2 t/s^2=1/(c s) c s ( e +- Sqrt[1 + t^2(1 - e^2)]) if t->Infinty, c s t Sqrt[1-e^2] -> Sqrt[1-e^2]