The following questions are worth 10 pts each

Record your steps! (Grade based on method displayed not just numerical result)
14. Particles 1 and 2 collide in space where no external forces are present. Particle 1 , with mass $m_{1}=2 \mathrm{~kg}$, moves parallel to the x axis and collides with particle 2 (which has mass $m_{2}=3 \mathrm{~kg}$). The below lists a pre-collision (unprimed) and a post-collision (primed) velocity (in m / s). The x and y velocities are listed as an ordered pair: $\overrightarrow{\mathbf{v}}=\left(v_{x}, v_{y}\right)$.

$$
\begin{array}{cll}
\text { particle mass } & \text { pre-collision velocity } & \text { post-collision velocity } \\
m_{1}=2 & \overrightarrow{\mathbf{v}}_{1}=(-5,0) & \overrightarrow{\mathbf{v}}_{1}^{\prime}=\left(\frac{2}{5}, \frac{9}{5}\right) \\
m_{2}=3 & \overrightarrow{\mathbf{v}}_{2}=(0,0) & \overrightarrow{\mathbf{v}}_{2}^{\prime}=\left(-\frac{18}{5},-\frac{6}{5}\right)
\end{array}
$$

A. Show that the initial momentum in the x direction equals the final momentum in the x direction.
B. Show that the initial momentum in the y direction equals the final momentum in the y direction.
C. Calculate the total kinetic energy in the pre-collision state and in the post-collision state. Is this an elastic collision?

