Complex Numbers Review
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The real numbers (denoted R) are incomplete in the sense that standard operations
applied to some real numbers do not yield a real result (e.g., square root: /—1). It
is surprisingly easy to enlarge the set of real numbers producing a set of numbers
that is closed under standard operations: one simply needs to include y/—1 (and
linear combinations of it). Thus this enlarged field of numbers, called the complex
numbers (denoted C), consists of numbers of the form: z = a + by/—1 where a and
b are real numbers. There are lots of notations for theses numbers. In mathematics,
v/—1is called i (so z = a + bi), whereas in electrical engineering i is frequently used
for current, so v/—1 is called j (so 2 = a + bj). In Mathematica complex numbers
are constructed using I for 7. Since complex numbers require two real numbers to
specify them they can also be represented as an ordered pair: z = (a,b). In any
case a is called the real part of z: a = Re(z) and b is called the imaginary part of
z: b =1Im(z). Note that the imaginary part of any complex number is real and the
imaginary part of any real number is zero. Finally there is a polar notation which
reports the radius (a.k.a. absolute value or magnitude) and angle (a.k.a. phase or
argument) of the complex number in the form: rZf. The polar notation can be
converted to an algebraic expression because of a surprising relationship between the
exponential function and the trigonometric functions:

0

¢!’ = cosf + jsind

Thus there is a simple formula for the complex number z; in terms of its magnitude
and angle:

|z1] = Va2 +b2=r

a = rcosf =|z]|cosf
b = rsinf = |z|siné
21 = a+bj=|z|(cosd + jsinf) = |z|e?

For example, we have the following notations for the complex number 1 + i:
I+i=14+j=1+1=(1,1) =245 = V2&™/*
Since complex numbers are closed under the standard operations, we can define things

which previously made no sense: log(—1), arccos(2), (—1)7, sin(é), .... The complex
numbers are large enough to define every function value you might want. Note that



Figure 1: Complex numbers can be displayed on the complex plane. A complex
number z = a + bi may be displayed as an ordered pair: (a,b), with the “real axis”
the usual z-axis and the “imaginary axis” the usual y-axis. Complex numbers are
also often displayed as vectors pointing from the origin to (a,b). The angle 6 can be
found from the usual trigonometric functions; |z| = r is the length of the vector.

addition, subtraction, multiplication, and division of complex numbers proceeds as
usual, just using the symbol for /—1 (let’s use j):

z1:a+bj 22:C+dj

Atz = (a+bj)+(c+dj) =(atc)+(b+d)j

a—zn = (a+bj)—(ct+dj)=(a—c)+(b—d)j

21X 2 = (a+bj)x (c+dj) =ac+ adj + bcj + bdj* = (ac — bd) + (ad + be)j
1 1 1 a—bj a—bj a —b

21 a+bj a+bj a—0bj a®+0? a2+62+a2+62‘7

Note in calculating 1/2; we made use of the complex number a—bj; a—bj is called the
complex conjugate of z; and it is denoted by 2} or sometimes z7. See that zz* = |z|2.
Note that, in terms of the ordered pair representation of C, complex number addition
and subtraction looks just like component-by-component vector addition:

(a,b) + (¢,d) = (a+b,c+d)

Thus there is a tendency to denote complex numbers as vectors rather than points in
the complex plane.

While the closure property of the complex numbers is dear to the hearts of math-
ematicians, the main use of complex numbers in science is to represent sinusoidally
varying quantities in a simple way. For example, you may remember that the super-
position of sinusoidal quantities is itself sinusoidal, but with a new amplitude and
phase. For example, in a series RC circuit the voltage across the resistor might be
given by A coswt whereas the voltage across the capacitor might be given by B sin wt,
and the voltage across the combination (according to Kirchhoff) is the sum:



Figure 2: The complex conjugate is obtained by reflecting the vector in the real axis.
Complex number addition works just like vector addition.

Vr(t) + Ve(t) = Acoswt+ Bsinwt  where: A, B e€R
= VA?+ B2 (

coswt +

A B .
Vo " “’t)
= VA2 + B?(cosd coswt + sin d sin wt) where: cosd =
= VA?+ B?cos(wt —0)

Yuck! That’s a lot of work just to add two sinusoidal waves; we seek a simpler method
(which might not seem overly simple at first glance). Note that Vi can be written as
Re(Ae“t) and Vi can be written as Re(—jBe’*") so:

Vr(t) + Ve (t) = Re ((A — jB)e’)

A
VB

Now using the polar form of the complex number A — jB:
A—jB=+VA24 B2e° where: tand = B/A
we have:
Vir(t) + Ve(t) = Re((A-jB)e)
= Re (\/m e ™90 ej“t>
— VAT BPRe (1)
VA2 + B2 cos(wt — )

Complex numbers are particularly important for calculations in a.c. circuits, where
voltages and currents are all changing sinusoidally at the same frequency. We assume
each is of the form:

v(t) = Re (V™)

i(t) = Re (o)



The possibility of phase shifts between these voltages and currents is accounted for
by making Vy and I, complex numbers:

v(t) = Re (Vo)
Re (Wb\ej‘bew)
= |Vp| cos(wt + ¢)

Thus ¢ would be the phase shift of this voltage and V.., = |Vo|/V2.

In the case of a capacitor, the voltage depends on the stored charge, which is the
integral of the current:

H o1 1 5 A
U(t>:£6'):5/Zdt:5R6</IO€]tdt):Re<ja)—OCejt>

So Vo = Ip/jwC, i.e., voltage and current have a linear relationship. Playing the role
of resistance is Z = 1/(jwC), which is called the impedance of the capacitor. For
resistors, capacitors and inductors there is a linear relationship between the complex
currents flowing through the device and the complex voltage across the device:

Vo =21,

where Z is the complex impedance. For resistors Z = R, for capacitors Z = 1/(jwC)
and for inductors Z = jwlL.

The complex numbers Vg, Iy, and Z can be treated in Kirchhoff’s laws exactly as
voltages, currents, and resistances were treated in d.c. circuits. Thus for a general

voltage divider we have:
Vin
Vin z,
Vow = Zol =7
! ? > 7y + Zs Vou
V:)ut o ZZ Z;
Vio  Zi+ 2 e

So if Z, is a capacitor and Z; is a resistor (i.e., our low pass filter) we have:

Voo 1/GwC)
Vi R+1/(jwC)
B 1
~ jwRC+1
— |ij01+ e where: tand = wRC
= 1 Al

(WRC)Z + 1



See that the —3 dB frequency (where |Vou/Via| = 1/v/2) must satisfy: wRC = 1. If
w < 1/RC (ie., low frequency) we have:

Vou
Vint ~ 1
If w> 1/RC (high frequency) we have:
Vo 1
Vin  JwRC

Homework

1. Prove that when you multiply complex numbers z; and 2, the magnitude of
the result is the product of the magnitudes of z; and z3, and the phase of the
product is the sum of the phases of z; and zs.

Re

0;=06,+0,

r3=rif;

2. Express the following in the rZ6# format (I bet your calculator can do this

automatically):
1 3+1 - 1
b 25¢* d) (1/(1+1))"
W Ot OB @ |
3. Find the following in (a,b) format (I bet your calculator can do this automati-
cally):
3t —17 .
(a) Z,Z+ 1 (b) (.64 + .774)" (c) V3 +4i (d) 25¢* (e)In(—1)

4. Consider the following circuit. Plot the (Viu)rms as a function of frequency,
where (Viy)rms = 1 V. Plot the phase difference between V., and Vi, as a
function of frequency. Your plotted frequency range should include frequencies
such that X > X and X¢o <« X1
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