
PHYS 217 The TWK Computer Spring 2016

A computer consists of a state: lots of DFF generally organized into a sequence of largely equivalent
registers (of size 16, 32, 64 bits depending on the technology; whatever that size is we’ll call that
a word) that can be modified by an instruction (a binary number inputs, again 16, 32, 64 bits
depending on the technology). By this definition a JKFF is just a very simple computer with one
one-bit register Q that can be modified by the instruction JK. Normally a sequence of instructions
(a program) is stored in RAM. A specialized register, called the program counter or PC, determines
the address in RAM of the instruction to be executed. Like any counter, the PC will increment on
a clock edge but may also be set to some value defined on its inputs. A non-incremental change in
the PC will make a big change in the next instruction to be executed. This is called a branch or
jump.

A computer is largely defined by the set of instructions the chip designer has implemented. HH
14.2 and Table 14.1 gives a brief and simplified tour of the instructions available in early Intel chips
(x86). For this project I’ve defined a computer both more complex and more simple than the x86.
It has 16 64-bit registers; since a single hex digit can name 16 things the registers are named with
a single hex digit: r0–rF. r0 and rF are both specialized: rF is the PC and r0 is automatically
connected to whatever word follows the current instruction in RAM, i.e., whatever word is at the
address1 in RAM of PC + 1. The instruction is organized to allow operations that involve up to
three registers. One register may be changed by the operations: the destination2 register whose
CLK input is controlled by the D-decoder and hence the DST or D nibble (4 bits, a hex digit) of the
instruction. (Every register’s D inputs are connected to the D-bus but only one will be clocked.) Up
to two registers may be used to calculate the value to be placed on the D-bus and hence eventually
in the destination register. The binary number held by the two source registers will be placed on
the A-bus or B-bus; the A-decoder (and hence the A nibble of the instruction) determines which
register is connected to the A-bus; the B-decoder determines which register is connected to the B-
bus. The bottom 3/4 (everything except the first 16 bits of the 64-bit instruction) of the instruction
determines exactly how the value(s) on the source buses are used to determine the value placed
on the destination bus; we call that part of the instruction the ‘opcode’ (operation code). The
bits in the opcode would control exactly which functional units are connected to the D-bus and
what those functional units should do. (I.e., we imagine an arithmetic unit that can add, subtract,
multiple, divide, etc. according to some input controls that are connected to the opcode bits of the
instruction.) The top quarter of the instruction is used to determine which (if any) of the registers
are connected to the various buses. Leaving aside the most significant nibble, the next nibble (the
A nibble) says which of the 16 registers are connected to the A-bus, the next nibble says which of
the 16 registers are connected to the B-bus, the next nibble says which of the 16 registers will be
updated using the value on the D-bus. That is these nibbles are directly connected to the respective
decoder that selects which registers are connected to which bus (or in the case of the D-decoder,
which register is connected to the system clock which will force its DFFs to read and store the
value on their D inputs). The top nibble in the instruction, with its three least significant bits,
simply determines whether the operation uses the A, B, or D buses. These bits will be connected
to the enables of the corresponding decoder. The MSB in the instruction determines if the PC will
be incremented by one or two; It is directly connected to the 2x input pin of the PC.

In denoted these instructions all four bits of the high nibble are displayed, followed by the hex
digits for the A B D decoders. If a decoder is turned off by the appropriate bit of the first nibble,

1This is an unusual feature; generally RAM is organized into bytes not words so the following 64-bit instruction

would be at PC + 8
2The D used to describe this stands for destination not the hex digit D. Similarly the bus names A and B are

arbitrary and have nothing to do with the corresponding hex digits.

the corresponding value of the hex digit does not matter and it is displayed as x. We don’t bother
to display the bottom 3/4 of the instruction.

An important feature of operations is the resulting Condition Codes (CC): individual bits that
report whether the most recent operation produced a zero result, a negative result, or (for logical
operations) a 0. The various CC bits control if the PC is updated, i.e., if a branch will occur.

Note: since ‘floating point’ numbers (i.e., computer versions of the real numbers) are radically
different from integer binary numbers, many instructions come in two versions: one that starts
with f for floating point numbers and one that doesn’t for integer numbers. (e.g., fneg negates a
floating point number simply by flipping the sign bit (which is the MSB) whereas neg on an integer
requires twos complement).

Homework

1. Find on the web site the file: sqr.txt. This file contains code that should calculate the
square root of a number, S, that is stored at a known address in RAM. The method involves
iteration: given an approximate version of the square root of S (call that xn) an improved
approximation (which we’ll call xn+1) is:

xn+1 =
1

2

(

xn +
S

xn

)

(1)

(You can find information on this method at wiki—it’s based on Newton’s Method of root
finding, but an easier approach is to think of xn and S/xn as a ‘factorization’ of S. If xn
is the square root the two factors will be the same. If xn is a bit smaller (larger) than the
square root, the other factor will be a bit larger (smaller). In either case, averaging the two
factors will provide an improved guess.) The overall plan is to run this improvement process
until an improvement step hardly changes x at all (i.e., the percent change in x is small:
|xn+1 − xn|/xn+1 < ǫ where ǫ is a small number you supply.

Of course we need a starting guess! For a square root, the exponent of the floating point
number needs to be cut in half. Unfortunately the exponent is stored in the 11 bits following
the sign bit and stored with an offset (so 0 in the exponent bits actually corresponds to an
exponent of about e = −210 = −1024 and so a multiplier of about 2e ≈ 5× 10−309). It turns
out that halving the exponent looks like this in terms of integer operations:

x0 ← (i− 252)/2 + 261 (2)

where i is the bit pattern of S thought of as an integer and ÷2 is implemented as a right
shift by one bit. The supplied code has several errors. Find/report three errors! Rewrite
Eqs. (1–2) on your answer sheet. Label three operations expressed in the equations with the
corresponding code that does that operation.

2. The famous infinite series for e is:

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ · · ·

Write code to add up this series until the added term is ‘small’.

3 register instructions

f add A+B → D
f sub A−B → D
f mul A×B → D
f div A÷B → D

and A �B → D
or A+B → D
xor A⊕B → D
asl shift A: B digits left → D
asr shift A: B digits right → D
bic clear the Bth digit of A → D
bis set Bth digit of A → D

2 register instructions

finv 1/B → D
f abs |B| → D
f neg −B → D
f cmp A−B update CC

i2f integer B to float in D
f2i float B to integer in D
inc B + 1→ D
dec B − 1→ D
mov B → D

not B → D
load (B)→ D
store A→ (B)
bit is the Bth digit of A 0 or 1: update CC

PC update instructions

br same as: mov B rF
beq if CC=0: mov B rF
bne if CC 6=0: mov B rF
bpl if CC>0: mov B rF
bmi if CC<0: mov B rF
bb1 if CC bit=1: mov B rF
bb0 if CC bit=0: mov B rF

1 register instructions

f tst update CC based on B
clr 0→ D

CC instructions

ccc clear all CC
clz clear zero CC
cln clear negative CC
clb clear bit CC
scc set all CC
sez set zero CC
sen set negative CC
seb set bit CC

