When:

Read:

Homework:

Lab:

References:

Uncertainty Analysis Workshop

Begin: January 17 ; Due: January 27

Taylor, An Introduction To Error Analysis
Chapters: 1, 2, 3, 4, 8 (Now); Read entire book over the semester.

http://www.physics.csbsju.edu/stats/

pages: Mean, Standard Deviation, etc, Ordinary Least Squares (Regression)
Beyond Ordinary Least Squares, WAPP: Fit to data with y-errors
ANOVA: ANalysis Of VAriance between groups

(work in lab notebook) 3.18, 3.26, 3.36, 3.48, 3.50, 4.5, 4.18, 4.28, 8.26 (see following)
8.26: Do not take the log of the data, instead enter the count data into

WA PP, use the proper error and functional form and make a

semilog plot. Calculate 7 and its error from the fit.
Read Web: Ordinary Least Squares (Regression) and record tree-age data.

Read Web: Beyond Ordinary Least Squares and read problem 8.17.
Use above web site to fit and display several types of fits to the tree-age

data. Tape in your notebook a plot of several of these fit lines. Label
the lines with the type of fit. Select what is in your opinion the best
fit. Explain why you think it is the best fit. Make a table displaying the
parameters from the various fits. Circle the minimum and maximum
slope and y-intercept.

Complete experiments 1 and 3 below. (Many of you did 2 last semester.)
Record the results in your notebook.

Bevington, Data Reduction and Error Analysis for the Physical Sciences
Press et al., Numerical Recipes

Abstract

These three experiments are intended to demonstrate uncertainties as they can be
found in real experiments and to introduce you to more sophisticated measures of these
uncertainties. The first experiment deals with the problem of definition (p. 46) which
occurs when the phenomenon to be measured is “fuzzier” than the device used to
measure it. The second experiment deals with random event counting in which the count
itself provides the uncertainty. The final experiment introduces statistical uncertainty.

1 Finding the Focal Length of a Lens

1.1 Purpose

The purpose of this experiment is to introduce the problem of definition. In many of our
labs the problem of definition is the primary source of uncertainty.



1.2 Theory

(See Halliday, Resnick & Walker chapter 35, particularly section 35.6.) The light leaving an
illuminated object (like an illuminated slide) can be collected by a lens and used to produce
a real image on a card located on the other side of the lens. If o is the distance between
the slide (the “object”) and the lens, and i is the distance between the card (with focused
image) and the lens, then it can be shown that
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where f (a constant) is the focal length of the lens. You are to try to verify this equation
and determine f. Note that, by this equation, o must be greater than f if a real image
forms (i.e., i > 0).

1.3 Procedure

Move the holder with the slide to the 0 cm mark on the optical bench. Set-up the lamp and
shade to illuminate the slide, sending the light toward the lens. Start with the lens at the 19
cm mark and the card near the 100 cm mark. Align the lamp and move the card so that the
image on the card is as clear as possible. Note that the quality of being “focused” is hard to
define, i.e., a range of measurably different card positions all look focused. This is the prob-
lem of definition. Record half the range of possible card positions as the uncertainty in the
card position. Have your lab partner do the same and see how your ranges and best values
compare. (Note that as a result of the large uncertainty in the card position, ¢ (position of
the card minus position of the lens) will have a large uncertainty, whereas o (position of the
lens minus position of the slide) will have a small uncertainty. Thus, following the standard
practice of putting the small-error quantity on the x-axis, o will be the independent variable
and ¢ will be the dependent variable.) Repeat this process producing at least eight well-
chosen lens positions. (Note that well-chosen means that you are not essentially repeating
an earlier measurement, i.e., make sure that either ¢ or o has changed substantially between
your measurements. Both i and o should span the range 20 to 50 cm.)

As you are doing the experiment, fill in a table with slide position (which might as well be
fixed), lens position, card position, o, and i. (Of course each quantity has an uncertainty.)
You should find that the uncertainty in ¢ is not constant. Use the appropriate mode of
WAPP for y-errors and chose the proper functional form for the expected relationship.
Find f from the fit parameters.

1.4 Using WAPP on the Web

Start your favorite web-browser. (I use Netscape.) Enter the web address:
http://www.physics.csbsju.edu/

Select Statistics and then WAPP: Fit to data with y-errors Note that your error in y = i
varies; neither absolute nor percentage errors are appropriate. You must: “Enter separate y
errors for each data point”. The program will then allow you to set the error for each data




point. Select the appropriate functional form. The program will print out your results. DO
NOT play the error game of re-guessing your original error to get what somebody told you
is the “right” x2. Record the parameter values and errors. Tape a copy of the computer
results into your notebook. You will need them to calculate f!

You should also produce a plot (to appear in your notebook). Plots will be best reproduced
on postscript printers. Select the “PDF” format; the program Acrobat should launch and
allow you to see and print the plot.

As you know, many functional forms can be linearized by transforming variables before
you plot. For example, plotting log(x) and log(y) will straighten out a power-law function.
Log-log paper makes the transformation automatic by labeling lines with x while spacing
the lines according to log(z). In this experiment plotting % and % should produce a straight
line; we need “inverse-inverse” paper to make the transformation automatic. Such odd sorts
of paper are available on WAPP by simply selecting the proper scale options. Produce such
a plot and tape it in your notebook.

1.5 Results

Report your value for the focal length of the lens with an uncertainty. Include both linear
and inverse-inverse plots.

2 Uncertainty in Random Event Counting

2.1 Purpose

The purpose of this experiment is to notice that in counting random events, like nuclear
decays, for a fixed time, repeated measurement of the count yields different values. The
randomness of nuclear decay necessarily produces uncertainty in the original count. You
are to demonstrate that the standard deviation of the number of counts during a fixed time
period (60 seconds) is about equal to the square root of the average number of counts. Thus
in future labs you can estimate the uncertainty in one count value without repeating the
count; just use the square root of the count as the uncertainty in the count.

2.2 Theory

The mathematics behind the physics is the Poisson distribution: see Taylor, chapter 11 or
Bevington, section 3-2.

Nuclear decays frequently produce energetic particles called alpha («) particles. (An «
particle consists of two protons and two neutrons bound together and is exactly the same
thing as a helium (*He) nucleus.) This experiment seeks to count these sub-atomic particles,
as they pass through a screen. The screen is doped Zinc Sulfide, ZnS(Ag). When an «
particle strikes the screen it excites some of the electrons in the material to a higher energy
state. When one of the excited electrons returns to its normal state, a photon of light is
emitted. The emitted photons then enter the photomultiplier tube and hit the cathode. The
cathode is made from a photoelectric material which emits a fixed number of electrons per



photon hit (i.e., the incoming photon is converted to several electrons). These electrons are
then accelerated by a high voltage and slammed into another electrode; 3-6 new electrons
are ejected per electron hit (i.e., the electrons are multiplied and the current amplified).
These newly ejected electrons are again accelerated and directed onto the next electrode
where again they eject 3—6 times as many electrons. This happens ten to twelve times. The
resulting current pulse from the anode of the photomultiplier is large enough to be detected
and counted as an event. DANGER: high voltage is required to accelerate the electrons;
the definition of high voltage is a voltage large enough to kill a person. Let’s not test to
see if the definition is accurate!

2.3 Procedure

CAUTION: The radioactive « source we are using is contained within the black photo-
multiplier tube. Do not take it apart to see this source.

1. Ludlum 2000 scaler should have been left on by the previous student. If not turn the
main power switch to LINFE and let it warm up for about 10 minutes.

2. All other knobs have been preset, but make sure the high voltage (HV) is turned to
about 4.5 (so the meter reads ~650 V), the minutes are set to 1, and the multiplier
is set to X1. If you think something is not set right, ask Tom or Dan to check it out.
Do not worry if there are numbers on the display. These will be cleared automatically
when you press the COUNT button.

3. Press the COUNT button. The red light should go on and you should see the Lud-
lum display go to zero and then start counting up as it records events. It will stop
automatically after it has counted for a minute. The red light will go dark when the
count-time has expired.

4. Record the count.

5. Go to 3 and repeat until you have ten counts at one minute each.

2.4 Results

Report the average and standard deviation of the count over 10 trials. (Either learn to
use the stats functions on your calculator or use the web: Mean, Standard Deviation, etc.)
Calculate the square root of the average count and compare it to the standard deviation.
One is supposed to find VN ~ oy.

3 Statistical Uncertainty

3.1 Purpose

The purpose of this experiment is to investigate a more sophisticated measurement of uncer-
tainty: standard deviation and standard deviation of the mean (SDOM). In this experiment
we use a die to simulate a fluctuating measurement (e.g., the fluctuating least significant



digit on a digital meter). In this case, what should be recorded as the measurement and
what should be recorded as the uncertainty? (The answers are discussed in Taylor; in short:
the mean and the standard deviation of the mean.) Clearly for an individual measurement
the range of fluctuation (i.e., the standard deviation) indicates the uncertainty. However in
finding the range of fluctuation, more data is collected—often the average (mean) of that
data better represents the measurement than any single measurement. But if we record the
mean as the value, what is the uncertainty in that value? Surely averaging helps reduce the
fluctuation—that is if we were to repeat the whole process of finding the mean again and
again the means would fluctuate less than the values averaged. Taylor reports (Equation
(4.14)) a formula that predicts the fluctuation in the means (SDOM) from the fluctuation in
the values and the number of values averaged. If this formula is correct, in future labs you
can estimate the uncertainty in your mean just using the values you recorded to calculate
that mean.

3.2 Theory

(See Taylor chapter 4 or Bevington chapter 2.)

3.3 Procedure

Find five six-sided dice. Roll the five dice 16 times, recording the value on each die (e.g.,
the red die value, the green die value, etc.) and their sum in a table.

3.4 Results

Use a calculator or the above statistics web site to automatically calculate the mean and
standard deviation of each of the six columns of data (five dice and sum). For each column,
report the percentage of the values that lie one standard deviation or less from the mean;
no “rounding”! (cf., middle p. 101). See if Equation (3.16) is approximately satisfied for
your sum. (This means calculate both sides of Equation (3.16) and report how accurate
the supposed equality actually is.) How well does Equation (3.4) work? Calculate the
standard deviation of your five means. You should find that the means have a smaller
standard deviation (uncertainty) than the raw measurements, i.e., the fluctuation (error) in
an average is less than the fluctuation of the numbers that produce that average. In fact,
Equation (4.14) claims
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Check it out! (This means calculate both sides of Equation (4.14) and report how accurate
the supposed equality actually is.)

A “loaded” die is one modified so it produces “unusual” results. (For example, producing
on average more 6s than 1s, rather than the expected unbiased outcomes.) A common way
to detect unusual distributions is ANOVA. Using the ANOVA web page (with “copy &
paste data entry”) enter the results for your five dice. Hardcopy the results and produce a
plot displaying the group means with 95% confidence intervals. Tape these hardcopies into



your notebook. Did you detect a loaded die? If so, which one is loaded and what is the
evidence that it is loaded?

4 Summary

The way to estimate statistical uncertainties is to repeat the experiment many times and
to report the standard deviation of the mean as the statistical uncertainty. However, we
instructors have a hard time convincing you to do the same experiment a few thousand times,
so we have often come up with “short cuts”, like trying to guess how the results would differ
if you actually did the experiment again or using the manufacturer’s specifications. These
short cuts are really wrong. As a result you will often miss-guess your uncertainties by a
factor or 2 or more, and thus produce reduced y?s that deviate from 1 by a factor of 4 or
more. We instructors know this—there is no point in trying to hide what somebody told you
was a “bad” x2. A not uncommon (but not really legitimate) approach is to make a series of
measurements that you think should to fall on a “smooth curve”, and then use the deviation
of those measurements from that “smooth curve” as a measure of your uncertainty. (The
legitimacy of this approach is much reduced if the “smooth curve” is really a fit curve, but
in fact this is how our elementary fitting programs work.) About the only case where there
is a fully legitimate short cut in finding the uncertainty is in counting random events (and
then only if the events are known to be truly random and if the apparatus is known to
be working properly—and generally the only way to be sure of all that is to repeat the
experiment). I must finally add that the magic known as “resampling” seems to provide
a “free lunch”— one data-set may play the role of many. So if at some point you must
estimate errors but cannot repeat the experiment, investigate resampling.

Statistical uncertainties are the easy part; systematic uncertainties are so tricky this work-
shop has been largely silent about them. (The summary statement for systematic errors is
do the measurement again a totally different way. But in real life that job is often given to
another experimenter and you are left to make an informed guess about calibration errors.)



