Thomas Precession

1 Discussion

In 1926 physicists were busy using the newly developed quantum mechanics to explain the be-
havior of electrons “orbiting” around the nucleus. Many pieces fell quickly into place, but there
remained puzzling oddities which we now know are answered by proper application of special rel-
ativity. Relativity was a somewhat surprising source of solution since the speed of the electron in,
say, a hydrogen atom is “only” about = v/c = % Most relativistic effects are second-order in 3
(eg,y=1/y/1-p2=1+ %62 +---) and so “small” effects were expected whereas the problems
had to do with factor-of-two shifts. L.H. Thomas is correctly famous for his solution to one of these
problems which involves a frame-rotation effect in centripetally accelerated, fast-moving particles.
We will make no attempt to put “Thomas precession” into its atomic context, and instead aim
to show that a series of Lorentz transformations that seemingly should produce no effect, in fact
produces a frame rotation.

I assume you are familiar with the following aspects of special relativity:
1. If we make a “boost”, e.g., jump to a frame of reference moving along the z-axis at a speed

given by f, then coordinates in the new frame (2/, 3/, 2/, ct’) can be related to the coordinates
in the original frame (z,y, z, ct) by a matrix equation:
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2. 4-tuples like: (z,y, z,ict) that transform according to the above matrix equation are called
four-vectors. Yes, i in the 4*"* component is v/—1. Use of this “complex metric” will make our
life easier (even though the “complex metric” is, in turn, replaced by seemingly more difficult,
but real-valued, entities in more advanced treatments of relativity). Another important four-
vector is the velocity four-vector:
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Additionally, since 7 is a common factor for all four components, we can determine S, = iuj /uq
or more generally: 8 = ii/ug4.

3. Simple rotation of the frames is also described by matrix transformations. For example, if the
primed frame is rotated by an angle 6 in 2D we have:
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Note: both the Lorentz transformation and the simple rotation leave invariant the square of
vectors. This property defines the matrices as orthogonal matrices.



Frame S is our original frame. Frame S’ is moving
at a velocity given by 51 relative to S and frame
S” is moving at a velocity given by f» relative to
S’. T've displayed the matrix for a boost along

s” the z-axis; Mathematica can supply us with the
y x (quite complicated) matrix for boosts in an arbi-
trary direction: boost [bx,by,bz] if we include a
package:
........................ -
By
S
X
In[1] := <<LorentzBoost.m ... Learn the function boost [bx,by,bz]
In[2] := m=boost[0,b2,0] .boost [b1,0,0] ...m is the matrix which first boosts along z

with S=b1 to S’ and then boosts along
y' with f=b2 to S”.

To figure out how to boost back to S, consider the four-velocity of the origin of S. The origin of S
is not moving as viewed from S, so: u = (0,0,0,7). If we transform u to see what v is in S” we find:
In[3]:= u2=m.{0,0,0,I}

Now that we have u as seen in S” we can determine the corresponding velocity and boost back to
a rest frame for the origin of S. It turns out that this rest frame for the origin of S, arrived at via
a triangle of boosts, is rotated from S.

In[4]:= boost[I u2[[11]1/u2[[41]1,I u2([21]1/u2([41],I u2[[31]1/u2([4]1]].m
In[5] := n=Simplify[%] ...Simplify helped a lot but it’s still a
mess

It’s not as bad as it looks; part of the problem is that Mathematica has problems simplifying roots.
Notice the last matrix entry: n[[4,4]]:
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Sqrt[1 - bl ] Sqrtl[1 - b2 ]

Sqrt[(-1 + b1 ) (-1 + b2 )]

This is 1, but Mathematica doesn’t see it. We can see the structure of the matrix better if we look
at just the terms relevant for “small” ﬂ_; In the atomic application 8 ~ %, and 52 is the small
change in velocity due to the electric attraction to the nucleus during some time dt. Thus is makes
sense to expand for small 51 and even smaller ﬁg:

In[6]:
In[7]:

Series[%,{b1,0,2},{b2,0,1}] ...Does a Taylor expansion
nsmall=Normal [%] ...turns the series back into a normal
polynomial



The result is:

1 —1BiB 0 0
15185 1 0 0
0 0 1 0
0 0 0 1

Comparison with our rotation matrix shows the result is a small rotation in xy plane: 6 ~ —% 5182
(we assume: sinf ~ 0, cosf = 1). The exact value of § can be calculated from ArcSin[n[[1,2]]1].

2 Homework

Follow the above method, but use velocities in the y, z directions rather than z,y. Find the rotation
axis and magnitude. Plot (1) the rotation for f; = .9 and 3 = 0 through .99 and (2) the rotation
for g1 = .1 and B2 = 0 through .99

Using a boost with an arbitrary |E|, show that the determinant of the boost matrix is 1, and that
the boost matrix is orthogonal:

ol .0o=1
i.e., that the transpose of the matrix is the inverse of the matrix.

Turn in a printout showing each step as Mathematica solves the problem.
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