Mathematica

Mathematica is a general system for doing symbolic and numeric mathematics—including root finding, integration, differentiation, matrix algebra, plotting, fitting, Note: pay close attention to capitalization as Mathematica commands are case dependent!

Starting Mathematica: Log on to a UNIX workstation and at the csh (%) prompt type:

math ... For those using the command-line form.

mathematica ... For those using notebooks.

 $Alternatively, \textit{Mathematica} \ can \ be \ started \ from \ the \ "Toolchest:" \ Applications \rightarrow Mathematics \rightarrow Mathematica.$

Exiting Mathematica: At the *Mathematica* (In[n] :=) prompt type:

Quit ... Note capitalization.

Control-D also quits.

Input and Output:

With notebooks all input and output appears in a browser. You can print selected portions by selecting from a menu. If you run the command-line version, using an editor, cut and paste from an open file.

In[1]:= <<Dialog.m</pre>
...This will send all input and output into
a file called math.lis.

In[2] := % > file.ext ... Mathematica will create file.ext and write the last output in it.

 $In[4] := ! csh \ command$... $Mathematica \ will \ execute \ the \ csh \ command \ (e.g., ls, jot).$

In[5]:= ?Fi* ... Help for terms starting Fi, e.g., Fit.

Examples:

In[1]:= Solve[$x \land 2 + b_{\sqcup}x + c == 0, x$] ... Mathematica knows the quadratic equation.

 $In[2] := x \land 2 + b_{\sqcup}x + c /.$ First[%] ... Apply the first rule in the set.

Out[3] = 0 ...it works!

In *Mathematica*, % always stands for the last result. You can type %% to use the next-to-last result or %n to use the result Out[n].

```
\dots \int x^2 e^x dx
In[4] := Integrate[x \land 2 \land Exp[x], x]
                                                               \dots e^x(2-2x+x^2)
Out[4]= ...
                                                               ... Take the derivative of the previous result.
In[5] := D[\%,x]
                                                               ... Simplify to get x^2e^x
Out[5] = ...
In[6] := N[Pi, 50]
                                                               ... 50 accurate digits of \pi.
In[7] := FindRoot[Tanh[y] == 1/(2/y-1), {y, .9}]
                                                             ... Finds a solution near y = .9
In[8] := Series[Cos[x], \{x,0,6\}]
                                                               ... Taylor's expansion near x=0 up to x^6
In[9] := f[x_] := Re[Exp[I_{\square}x]]
                                                               ... Define the function: f(x) = \cos(x)
                                                                   the hard way
                                                               ... Define matrix m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
In[10] := m = \{\{a,b\},\{c,d\}\}
```

Mathematica knows lots of matrix operations including: Det[m], Inverse[m], Eigenvalues[m], Eigenvectors[m], m.n, m+n, ...

Graphics:

Mathematica can produce both screen and hardcopy plots.

```
In[1] := Plot[Sin[2_{\square}Pi_{\square}x], \{x,0,2\}] \qquad ... A graph of sin(2\pi x) appears on your screen.
In[2] := PSPrint[\%] \qquad ... Prints a copy on the Physics laserprinter.
In[3] := Display["file.eps", \%, "EPS"] \qquad ... Saves a file of graphic.
You may want to try some fancy color graphics like:
In[4] := Plot3D[Sin[x + Sin[y]], \{x,-6,3\}, \{y,-9,9\}, Lighting->True, Mesh->False, PlotRange->All, PlotPoints->90]
```

Including Mathematica Packages:

For example, to load the **Graphics`Animation`** package, at the *Mathematica* prompt type:

More Information:

For more information about Mathematica, please refer to

- The Mathematica Book, by Stephen Wolfram, Cambridge Univ Pr. ISBN: 0521643147
- Mathematica 4: Standard Add-on Packages