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1 Intrinsic semiconductors

The lower end of the conduction band is a parabola, just like in the quadratic
free electron case (E = h̄2k2

2m
).

The density of states for free particles in a box is:

g(E) =
V

2π2

2m

h̄2

3/2

E1/2

We assume that the electrons in the conduction band behave like free electrons,
and therefore use the the same density of states as for the free electron model.
We only correct for the effective mass and that we have to count the energy
from the bottom of the conduction band and up:

gc(E) =
V

2π2

2m∗
e

h̄2

3/2

(E − Ec)
1/2

The number of free electrons per unit volume in the conduction band is then
given by the following integral:



nc =
1

V

∫ ∞

Ec

gc(E) ∗ fFD(E)dE = 2 ∗ (
m∗

ekT

2πh̄2 )
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e
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kT = Nc ∗ e
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kT

where Nc ≡ 2(m∗
ekT

2πh̄2 )3/2.

We can make the same calculation for the number of holes per unit volume in
the valence band if we use the effective mass for holes and integrate from the
top of the valence band and down to inifinity. Here we also have to take into
consideration that fh(E) = 1− fe(E).
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1
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hkT
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where Nv ≡ 2(
m∗

hkT

2πh̄2 )3/2.

The chemical potential of the intrinsic semiconductor is found be setting nc =
nv:

µ =
Ec + Ev

2
+

3

4
kT ∗ ln(

m∗
h

m∗
e

)



Which shows that the chemical potential must be in the middle of the energy
gap:



In the same way, we can find the intrinsic carrier concentration by multiplying
nc and nv:

n2
i = nc ∗ nv = 4 ∗m∗

em
∗
h
3/4(kT/2πh̄2)

3
e−Eg/kT

The intrinsic carrier concentration is dependent only on the energi gap and
not on the Fermi level (which means that the law of mass action, nc ∗nv = n2

i ,
is valid also for doped semiconductors).

2 Doped semiconductors

Impurity atoms are added to provide loosely bound electrons (n-doping with
group 5 material) or holes (p-doping with group 3 material) that are thermally
excited to the conduction or valence band. The impurity atoms are usually not
close enough for the wavefunctions to overlap, therefore the impurity states are
localized. Their energy levels are either right below the conduction band or
right above the valence band. How close they are can be approximated with a
modified hydrogen atom model:



Eion = 13.6eV ∗ m∗

m
∗ (

ε0

ε
)
2

Here the electron mass m is replaced by the effective mass m∗ and the dielec-
tricity constant refers to the crystal and not to free space.

Example: Phoshorus n-doping of silicon. εr = 11.7 and m∗

m
is 0.19 near the bot-

tom of the conduction band for Si, which gives us Eion = 0.019eV . The donor
impurity therefore requires 0.019eV to become ionized and the position in the
band gap of the donor impurity level is just 0.019 eV below the conduction
band edge.

Assuming complete ionization, we set nc = ND. Combining this equation with

the already established relation nc = Nc ∗e
µ−Ec

kT , we find the chemical potential
for the n-doped semiconductor:

µ = Ec − kT ∗ ln(
Nc

ND

) (1)

It is seen that the chemical potential is moved closer to the conduction band
as the doping concentration increases.



The same argument can be applied to the p-doped case to show that

µ = Ev + kT ∗ ln(
Nv

NA

) (2)







When p-doped and n-doped materials are joined, there is an inbalance between
the n-type and p-type carrier concentrations on each side because of the dif-
ferent Fermi levels in the two kinds of materials. N-type and p-type majority
carriers will therefore diffuse into each others regions and recombine until a
potential is built up that opposes the diffusion currents. The potential is called
the built-in-potential, φBI , and it raises the band edges on the p-side so the
Fermi levels on each side are aligned:



After equilibrium is established, there is balance between the diffusion current
caused by the carrier inhomogenity (given by Ficks law) and the drift current
caused by the electric field (given by simple kinetic free electron theory):

n(x)µE(xx) = −D
dn

dx

which leads to

Ex(x) = −D

µ
∗ 1

n
∗ dn

dx

The built-in potential can now be calculated:

φBI = φ(∞)− φ(−∞) = −
∫ ∞

−∞
Exdx =

D

µ

∫ ∞

−∞

1

n(x)
∗ dn

dx
dx =

D

µ
ln

n(∞)

n(−∞)

Now we have the condition for the energy difference, but D
µ
, n(∞) and n(−∞)

are still unknown. It is therefore time to introduce Einstein-Nernst.

We start by writing the electric field as the gradient of the potential:



Ex(x) = −dφ

dx

Therefore

−µ ∗ n ∗ e ∗ dφ

dx
= eD

dn

dx

So

dn

dφ
= −µ ∗ n

D

The differential equation has the solution

n = n0e
− µ

D
φ

But because this non-uniform electron distribution has to be maintaned against
the potential φ using thermal energy, we must also have



n = n0e
− eφ

kT
φ

Thus we finally arrive at the Einstein-Nernst relation:

µ

D
=

e

kT

Now we continue to evaluate ln n(∞)
n(−∞)

. In the n-region the density of free

electrons is approximately n(∞) = ND. In the p-region, the negative carrier

concentration is taken from the law of mass action, n(−∞) =
n2

i

NA
.

From this we obtain the built-in potential:

φBI =
D

µ
ln

n(∞)

n(−∞)
=

kT

e
ln

NAND

n2
i

After establishing equilibrum between drift and diffusion currents, we are left
with a depletion region in the middle of the junction where the holes and



electrons have recombined and we have approximately no free carriers. Starting
out with the Poisson equation in one dimension, we can make a model of this
depletion region characterized by the parameters kT

e
, NA and ND:

−d2V

dx2
= Cρ(x)

(C depends on which system of units. In SI units C = 1
ε

where ε = KSε0.)

The net charge density, ρ, is approximated as zero outside the depletion region.
Inside the depletion region, we have approximately ρ = −qNA on the p side
(−dp ≤ x ≥ 0) and ρ = qND on the n-side (0 ≤ x ≥ dn).

Starting on the p side of the depletion region, integration of the Poisson equa-
tion yields

ε = −dV

dx
= −eNAC(dp + x)

Another integration yields

V = eNAC(
x2

2
+ dpx +

d2
p

2
) =

1

2
eNAC(dp + x)2



for −dp ≤ x ≥ 0, so that V (x = 0) = V1 = eNAC
d2

p

2
.

In the same way we have for the n side that V (x = dp) − V (x = 0) = V2 =

eNDC d2
n

2
.

And we have an equation for the total potential across the junction:

VC = φBI + VR = e
C

2
(NAd2

p + NDd2
n).

We now define d = dp + dn. And since NDdn = NAdp (charge balance), we
finally arrive at an equation that combines the potential across the junction
with the geometry and the doping profile of the depletion region:

VC =
1

2
Ced2 NDNA

ND + NA

.





We say that it is impossible to stop the drift current, since there always will
be minority carriers on each side of the junction that are thermally excited
and swept across the electric field (which is on the order of 10.000 V/cm).
When it comes to the diffusing majority carriers, there will be a Boltzmann
distribution on how many carriers that have energy enough to break through
the potential barrier. This recombination current is therefore proportional to
the Boltzmann factor e−qVC/kT .

When no external potential is applied, the generation and recombination cur-
rents are in equilibrium:

itot = irec − igen = igen − igen = 0 (3)

When an external potential, φext, is applied, the recombination current is in-
creased with the Boltzmann factor eqφext/kT , while the generation current re-
mains the same:

itot = igen ∗ eqφext/kT − igen = igen(eqφext/kT − 1) (4)

which shows us that the p-n junction acts as a rectifier.
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