Physics 339 Gibbs-Appell November 2017

In 1879 Josiah Willard Gibbs published! an alternative formulation for Newtonian mechanics.
Just as Lagrange’s formulation produces equations identical to those from F = ma but deals
more easily with constraints, so Gibbs’ formulation produces the same equations as Newton’s
but deals more easily with non-holonomic constraints. Gibb’s formulation looks quite simple.
Form what looks like total kinetic energy of all N particles but use accelerations not velocities:
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i=1

Express the result in terms of generalize coordinate accelerations (¢, for r € {1...k}). Find
the work done for displacements in those generalized coordinates:

k
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(The @, are called generalized forces.) Then
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Note that contributions to & that do not depend on the ¢, will play no role in the equations
of motion and will be dropped often without comment.
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Examples

Example 1: A particle responding to a potential V(z,y, 2):

1
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Q = -VV (5)
ma = —VV (6)
Example 2a: A particle responding to a central potential V(r) (polar coordinates):
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LGibbs, JW (1879). “On the Fundamental Formulae of Dynamics.”. American Journal of Mathematics.
2: 49-64. At the time Gibb’s work was mostly ignored; Paul Emile Appell independently rediscovered this
formulation in 1900.



Example 2b: Instead of using the holonomic coordinate # we can use the non-holonomic
coordinate dq = = dy — y dx. (dq is twice the area swept by r as the particle goes from
(z,y) to (z + dx,y + dy) and is therefore closely related to Kepler’s second law and angular
momentum— note: mq = L, but clearly ¢ depends on history not current configuration.)
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Note that while the Lagrangian
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is KE-PE, it produces incorrect equations of motion:
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because ¢ is non-holonomic.
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Example 3: Pseudo-forces on a rotating plane. Let r = (x,y) be the coordinates in a plane
that is rotating at €2 = Qz relative to the inertial frame.
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which displays the Coriolis and centrifugal pseudo-forces.

The Rolling Penny

We have from the Appendix (particularly Example 2):

1
®rot = 5

(]1 (W% + W%) + 13 (A)gz)) + (]193 - ]3(4)3)(@2(4)1 — CZ)lWQ)

(26)



Figure 1: Coordinate frame for rolling disk. Axis 3 is in the direction of the disk’s axle; 1
is always parallel to the plane and in the trailing direction if ¥ > 0; 2 points away from the
contact point P.

We must add to this B¢ys. Following rolling.pdf Eq. (7) and using rp = —Rey we have:

ACM = —L;JXI'p—QX(-UXI'p (27)
R{wxe+Q xw X ey} (28)
= R(-@g + QQ(A)l, —Qlwl — ngg, wl -+ ngg) (29)
So: .

®CM = 5 MR2 ((u)g — W2W1)2 + ((A)l + W2W3)2) (30)

The resulting equations of motion (with V' = MgRsin 6)
MR2(d)1 + (AJQ(A)g) + ]1 d)l - (]193 — ]3(4)3)&]2 = —MgR cosf (31)
Il CZJQ + ([193 — ]30)3)&)1 =0 (32)
MR2 ((A)g - wgwl) + ]3 d)g = 0 (33)

Making the usual rescaling: I + I[/MR? g+ g/R:

(]1 —+ 1) wl — ]193&]2 + (13 + 1)w2w3 = —g cos (34)
Il CZJQ + ([193 — [30)3)&)1 =0 (35)
([3 + 1) d)g — W1 = 0 (36)

(IL+1)w I, Qswy — (I3 4 1)waws — gcos b
Il d)g = (Igu)g - Ing)wl (37)

(13 -+ 1) d)g Wol1



The Rolling Ring

Following Fig. 1 RHS, rp = —R(ey + hes) (note that h has already been scaled: h < h/R),
we have:

Acy = —wXrp—QxwxXrp (38)
Acy/R = wx(ex+ hes) +Q X w x (ey+ hes) (39)
( —@3 + hd)g + wiws + hwlﬁg )

—han — w? — w33 + hwaQl3

w1 + waws — h(w? + w3?)

(40)

So:
1
Gou = 3 MR? (&7 (14 h*) + %03 + w3+
2@1 ((.Ug — hCUg)(CUQ + th) + 2@2&)1h(@2 + th) - 20)3(0)2}1 + wiwg + hleg)) (41)

The resulting LHS equations of motion

MR2 (wl(l + h2) + (hW3 — WQ)(WQ + th)) + [1 (,Dl — ([193 — [3(,03)(,02
MR2 (h(—(dg + (.Ugh + wl(wz + th))) + [1 CZJQ + (lng — [3&)3)001 (42)
MR2 ((A)g — (A)Qh — wl(wg + th)) + [3 d]g

With V = MgR(sin€ + hcosd) the RHS is quite simple:

( —MgR(cos @ — hsinf) )
0 (43)
0

Scaling the variables as usual and following the division of LHS/RHS as in rolling.pdf
Eq. (50):

(I +1+h2) i .. (h+1+890 o
(L +h?) wy—has | = (I +h?) (¢sinf + ¢cosb) — h(yh + pcos — psinhh) | =
(I3 4+ 1) w3 — hws (I3 + 1) (¢ + dcos — ¢sin B0) — h(¢psinb + ¢ cos 66)

(I + h?)Q3 — (I3 + 1)ws + hws)ws — hws3 — g(cos§ — hsin §)
(Igbdg - (Il + hz)Qg - hCUg)wl (44)
w1 (wg + hE2s3)

Hurricane Balls

Following Fig. 2, rp = —a(sinf es + (1 + cosf)es)

ACM = —erp—WXf'p—QXLUer (45)
Acy/a = w X (sinf ey + (1 + cosf)es) +w x (cosf ey —sinb e3)w; + (46)
Q X w X (sinf ey + (1 + cosb)es) (47)

—W1 + walls + (—wq + wafl3) cos § — w3 3 sin b

2 2

Wo + w183 + (Wo + wi(—ws + Q3)) cosf — w3 sin @
—w? — w3 — w3 cos b + (w1 + wows) sin b



Figure 2: Coordinate system for Hurri- Figure 3: Coordinate system for rolling
cane Balls on a tilted plane

So:

Goy = ma’ (2@%(1 + cos ) + w3(1 + cos )% + w3 sin® O+

201 (—w2(Q3(1 + cos §)? — wysin® @) — sin O(w] + (w3 — w33)(1 + cosh)))+
202 (1 + cos ) (w1§23(1 + cos ) — wyws cos O — ws sin O)+

2w3 (w1 sin B(ws cos @ — Q3(1 + cos 9)))) (49)
The resulting LHS equations of motion (scaling the variables as usual: I <+ I/2ma® and
letting ¢ = cosf, s = sinf):

201(1+¢) — s(w? + (w2 —ws3)(1+¢)) —wa((1 +¢)? —wss?) + I wy — (1123 — T3ws)ws
w2(1 + 0)2 -+ (1 + C)(WlQ3(1 + C) — WiwsC — wgS) + [1 d)g + (1193 — ]3(4)3)(4)1
—d)g(l + C)S + wl(wgc — Qg(l + C))S + (i)382 + ]3 d)g

(50)
With V' = 2mga(1 + cos ), scaling by 2ma? and g < g/a the RHS is quite simple:
gsin 6
0 (51)
0

Following the division of LHS/RHS as in rolling.pdf Eq. (80-81), the RHS becomes:

s(g +wi + (Wi —wsQs)(1+ ) + w2 QL + (14 ¢)?) — ws(ls + 5%))
—wl(l + C)(Qg(l + C) — (A}gC) — wl(Ing — ]3&)3) (52)
—wl(wgc — Qg(l + C))S

and the LHS:
wi(l1 +2(1+¢))
wo(l + (14 ¢)?) —w3(1 +¢)s (53)
CZ)3(82 + 13) — w2(1 + C)S



Appendix: Finding &, for a Rigid Body

We seek a formula for &, calculated in a frame where the 123 axes are aligned with the

principal axes. So
IL 1
2 oo
/(7‘ 1—rr>dm: 0 I, 0 (54)
0 0 I3

hence, for example, [zy dm =0 and [(y* + 2%) dm = I.

This principal axes frame is rotating at €2 relative to the inertial frame, the rigid body
has angular velocity w, and we let r,u,a denote respectively the location, velocity, and
acceleration of a piece of the rigid body relative to the CM.

= wXr=r+Qxr hence: I = (w— Q) xr (55)
a = WXP+wXr+Qxwxr (56)
= WX (W—Q)Xr+wxr+Qxwxr (57)
= WXWXT+WXr+QxXxwxr—wx2xr (58)
= WrnNw—wrt+toxr+(Q-r)w—(w-r)Q (59)
= (W Tw—wr+wxr—-rx2xw (60)
= (W rw-—wr—rx(w+Nxw) (61)
= WrnNw-—wr-rxe¢ (62)

Two important points: (A) only ¢ contains acceleration w, so in calculating &, we can
drop terms that do not contain ¢ and (B) when dotted with itself the term r x ¢ is nicely

<
connected with I:

(txd)-(rxp)=¢-rxpxr)=¢ (21 -FF) ¢ (63)

So
/ (rx @ dm=¢ T ¢ (64)

The non-zero cross term in a - a that includes ¢: —2(w-r) w- (r x @) looks to be a mess, but
note that the r component in w-(r x ¢») must match the r component in w-r as non-matching
terms will vanish when integrated as, e.g., [ @y dm = 0. Dropping terms that will vanish on
integration yields:

Wi w2 W — 2(wow1 375 + wiwa 15 + wiwsPax?)
—2w-r) | o1 wp w3 | = + 2(wsw1 Pas + WiwWaP3TT + Wowsd1T3) (%)
¢ G2 B3 ’ ' i
= —2wpw1 (75 — a7) — 2ot (5 — 73) — 2wrwsda (2T — 23) (66)
— —2wownwz(I1 — Ip) — 2wswown (Iy — I3) — 2wiwsws (I3 — 1) (67)

So

<~
®rot = Q’) 1 Q’) + w2w1w3(12 — Il) + w3w2w1(13 — ]2) + w1w3w2(11 — 13) (68)

N —



Example 1: In the general case I1 # I, # I3 we must evaluate in the body fixed frame so
=wand ¢ =w, so

o (I &2 + Ip w2 + I3 02) +

(.Ugwld)g(lg — [1) + w3w2¢’u1(]3 — Ig) + w1w3w2(ll — [3) (69)

N —

The equations of motion are Euler’s equations:

[1 wl + (A)g(x)g(]g - Ig) = Fl (70)
IQ CUQ + w1w3([1 — [3) = FQ (71)
[3 w3+(A}2W1(]2 —Il) = Fg (72)

where I' is the torque in the body-fixed frame.

Example 2: Consider a top (I; = Iy # I3), where the calculational frame has the top
spinning along the 3-axis (inclined at 6 from z axis) with the 1-axis horizontal. We then
have:

Q = <9, dsinb, ¢cos 9) (73)
w = (9, dsin(f), ¢ cos(h) +1p) (74)
(cf. rolling.pdf Egs. (13-16)) Note: w = Q + (0, 0, w3 — Q3)

P=w+UXxw=w+N2x (0,0, ws—03) =w+ (w2, —w1, 0){ws — N3} (75)

So
1 . i i i .
Q5rot = 5 (Il (w% —+ wg) + Ig wg) + [1&)1&)2{&)3 — Qg} — [1&)2&)1{&)3 — Qg} +
wawaw1 (I3 — 1) + wiwswa (1 — I3) (76)
= 5 (Il (w% + wg) —+ 13 wg) + [1Q3(w2w1 — w1w2) + Igtdg(tdgwl - w1w2) (77)
1 . . . . .
= 5 (Il (wf + w%) + Ig wg) + ([1Q3 — [3&)3)(&)2&)1 — wlwg) (78)

The resulting equations of motion:

[1 wl — ([193 — [3003)002 = Mg£ sin 6 (79)
[1 LLJQ + ([193 - [3(4)3)(4)1 =0 (80)
Iy = 0 (81)

From the last equation we conclude w3 =constant, which relates to p,, =constant in the usual
treatment. Substituting our Euler angle expression for w into the second equation:

I (¢sind + 2 cosB) — Iswsh = 0 (82)
%{]1¢Sin29+[3w3(3089} =0 (83)

Lipsin? 0 + Iswscosf = p, = constant (84)



where in the second line we used sin # as an integrating factor.

If the first equation is multiplied by w; and the second by ws and the two are added:

I (wiwy + wotg) = Mglsin 00 (85)
d (1
o {5 I (w%+w§)+Mg£cose} =0 (86)
1
5 I (W2 +w3) + Mglcos = E, = constant (87)

which is conservation of energy (aside from the conserved energy associated with ws). The
above are the usual starting point to describe gyroscopic motion.

Example 3: In the case of a sphere I; = I, = I3 = I; any coordinate system will have
principal axes aligned with coordinate axes so use the initial inertial frame (€2 = 0), then:
1 ) ) .
Brop = 3 I (0f 4+ &3 +u3) (88)
Consider the rolling without slipping motion of a sphere on a plane tilted at an angle o with

the y coordinate pointing uphill, z perpendicular to the plane (see Fig. 3). SoV = Mgsina y.
We have:

@:%M(i2+g2)+%l(wf+w§+w§) (89)
The rolling without slipping condition gives:
veuy = —Rzxw (90)
acy = —Rzxw (91)
Fom = R (92)
jom = —Ruw (93)
B = % (M +1/R? (#*+i°) + % 13 (94)
The resulting equations of motion:
(M+1/R)% = 0 (95)
(M+1/R*)§ = —Mgsina (96)
Twy = 0 (97)
We can compare this to the Newtonian solution:
Macy = —Mgsinay+F (98
acy = —Rzxw (99
Iw = —RzxF 100

—_
o
—_

= —Rzx (Macy + MRgsina y)
= MR*(zxzxw)+ MRgsina X
= MR*(i3z — w)+ MRgsina x
(I+MR?) &, = MgRsina
(I+MR*)dy, = 0
Tdg = 0
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