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Physics 339 Euler Angles & Free Precession November 2014

As described in the textbook, Euler Angles are a way to specify the configuration of a 3d
object. Starting from a fixed configuration the desired configuration is obtained by a three
step process:

1. rotation about the z axis by an angle ¢
2. rotation about the z' axis! (i.e., the rotated z axis) by an angle ¢

3. rotation about the 2z’ axis (i.e., the doubly rotated z axis which, in the end, is the
body axis 3) by an angle v

I strongly recommend looking at the Wiki visualizations (Euler.gif, author Juansempere;
also copied to the class web site) to appreciate these rotations. I hope it is clear that almost
certainly the object did not achieve its configuration by exactly these three rotations just as
it’s unlikely that an object reached a particular position by successive motions in the z, y
and z directions. We are recording configuration not history.

The body-fixed frame (123) with principal axes aligned with the frame is most convenient
for calculation; but we often need to know what a body-fixed vector looks like in the inertial
frame (zyz). We define matrices to reverse the above three steps:

<t¢e 2d /H((fs(g{)) sirﬂ’-(;_——_—- Yot Qo Erow hoedy
= 9)

. M sin(¢)  cos( 0 Pack Yo (1)
rotarioe ® f ‘ X : V‘%_"‘("Q
| 0 0 g ne “chvrom
My = 0 cos(f) —sin(d) Q\m, Feletim @)
0 sin(0) cos(6) ABLS
cos(yp) —sin(y) 0
My = sin(¢)) cos(v) 0 (3)
0 0 1
where:
x 2
Y :M@SMGM“P Ty (4)
2 3

Note: To make the reverse transformation (i.e., (z,y, z) = (%1, Z2, x3)) you would apply the
inverse matrices in the reverse order to (z,y,z). The inverse matrices are easily generated
by negating the angle (e.g., @ — —@) or taking the matrix transpose.

We begin by finding the relation between gz'S, 6,1 and w (in the body-fixed frame).

IThis is the convention of Goldstein’s Classical Mechanics and Wiki; our textbook makes this second
rotation about the ¢y’ axis with the warning that it is not standard. I'm going here with the standard
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MAE 2 (fsin(y)sin(6) + O cos(y), $eos(y)sin(0) — Osin(v), deos(6) +4)  (6)

Given w in the body-fixed frame it’s easy (for Mathematica) to calculate the kinetic énergy:

; L 0 0
MW et (o \, ¢ 0 0 Is
~d1c 1 in o : 1 5 A\ 2
= S0 (#sin(0) +6) + 5 I (dcos(0) + ¥) (8)

The problem at hand is free precession...no external forces or potential energy; the La-
grangian is just the kinetic energy 7. Notice that ¢ and 1 are cyclic (a.k.a., ignorable)
coordinates so the corresponding canonical (a.k.a., generalized) momenta are constants:

b = Gz =T (deos(0) +) ©)
Py = g—f; = I3cos(f) (qb cos(8) + 1&) +I) ¢psin®(8) = py cos(8) + I psin®(0)  (10)

Comparing to Eq. (6), see that p, = Lj (i.e., the angular momentum in the body-fixed z
direction); at the end of this document we discovery py = L, (i.e., the angular momentum in
the inertial frame 2z direction). Using these (constant) momenta we can rewrite the kinetic
energy much as in a Hamiltonian (but we will leave 6 alone):

1 sy (pg—pycos(d)® Py 1.
T==-1I 6 ¥ - _L+V(
2 T L) 2 2t ©)

This expression now just involves constants and § and 6; furthermore it is itself a constant.
The usual logic of 1d conservation of energy applies to #: turning points, equilibrium points,
etc. In particular the minimum of V() must be an equilibrium point where § = 0. Working
in terms of ¢ = cos @ note:
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and V' = 0 has two solutions: ¢ = p,/py and ¢ = py/pgy The first solution results in ¢ =0in
addition to § = 0. Applying those results to w see that w (and hence L) are entirely along
the body-fixed 3 axis. This is an object spinning in space with no additional motion. The
kinetic energy is simply: p% /(2I3)—the kinetic energy of rotation just about the body-fixed
3 axis.

The second solution is more interesting. Using the constant values of py, pg, cos@ find the
values of ¢ and 1):



Solve[{Pphi==Ppsi Ppsi/Pphi + dphi I1 (1- (Ppsi/Pphi)"2), | weibe ¥ t ¢

Ppsi== I3 (dpsi + dphi (Ppsi/Pphi))},{dpsi,dphil}] b tevms oF

{
(I1 - I3) Ppsi Pphi F%, o F;;
Out [20]= {{dpsi -> ---————-—————- y dphi ~ ——=—}}
I1 I3 I1
Thus a free body moves with
£ o —
£ -.; 9 9~0 T3ws3 Conslract e
L8 ¢ = ¢got= . (12)
_\‘o 0:: Il COS 90 ?“ *.
4+ _[3—_[1 : I;— I VeletlL{Tif
7 - _ - _
ol 3 ’l/) = Cos 90 IS Q30 t= II ws t (13)

solves the equations of motion. Note that (6, ¢) define the direction of the body-fixed 3 axis;
evidently it is inclined (at 6y) and rotating at rate ¢p. In the body frame,

in ¢ in 0 ;
= [ 2B sin 9, L cos, i (14)
Il Il IB
R i

A% .
i.e., wy has a constant value of py,/I3 while w, is rotating at rate ¢ and has constant
magnitude pg sin 6p/ ;.

If we transform L from the body-fixed frame back into the inertial frame and substitute in

the now know values for 1, ¢ and 0 = 0.

mphi.mtheta.mpsi.L

Simplify [%]

% /. {dphi->Pphi/I1, dpsi->Cos[theta] (I1/I3-1)Pphi/Il,dtheta->0}
Simplify [%]

Out[24]= {0, 0, Pphi}

We conclude that this solution has L in the inertial frame aligned with the z axis.

As stated above the fact that L, = p, is true in general:
mphi.mtheta.mpsi.L
Collect[%[[3]1]1,{I1,I3},Simplify]

2
Out[28]= I3 Cos[theta] (dpsi + dphi Cos[thetal) + dphi Il Sin[thetal]

where you’ll notice this result is exactly py
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