

x' = cost k + sinty

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Eg the Coordinates of the point $\binom{X}{3} = \binom{1}{1}$ are primed frame eve $\binom{X'}{3'} = \binom{\cos \theta + 516\theta}{-516\theta + \cos \theta} = \binom{\cos \theta + 516\theta}{-516\theta + \cos \theta} \binom{1}{1}$

Note: For this robotion metrics: $M^T = M^T = M(-\theta)$ det $(M) = 1 \longrightarrow \text{These are the general properties}$ of rotation metrics in particular in 36 space

... colled 50(3)

Torrespond

Special, re det M = 1

As described in the textbook, Euler Angles are a way to specify the configuration of a 3d object. Starting from a fixed configuration the desired configuration is obtained by a three step process:

- 1. rotation about the z axis by an angle ϕ
- 2. rotation about the x' axis¹ (i.e., the rotated x axis) by an angle θ
- 3. rotation about the z'' axis (i.e., the doubly rotated z axis which, in the end, is the body axis 3) by an angle ψ

I strongly recommend looking at the Wiki visualizations (Euler.gif, author Juansempere; also copied to the class web site) to appreciate these rotations. I hope it is clear that almost certainly the object did not achieve its configuration by exactly these three rotations just as it's unlikely that an object reached a particular position by successive motions in the x, y and z directions. We are recording configuration not history.

The body-fixed frame (123) with principal axes aligned with the frame is most convenient for calculation; but we often need to know what a body-fixed vector looks like in the inertial frame (xyz). We define matrices to reverse the above three steps:

rotation
$$\mathcal{M}_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 then go from body back to (1) in a trail (1) $\mathcal{M}_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$ along rotation (2) $\mathcal{M}_{\psi} = \begin{pmatrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (3)

where:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathcal{M}_{\phi} \mathcal{M}_{\theta} \mathcal{M}_{\psi} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \tag{4}$$

Note: To make the reverse transformation (i.e., $(x, y, z) \to (x_1, x_2, x_3)$) you would apply the inverse matrices in the reverse order to (x, y, z). The inverse matrices are easily generated by negating the angle (e.g., $\theta \to -\theta$) or taking the matrix transpose.

We begin by finding the relation between $\dot{\phi}, \dot{\theta}, \dot{\psi}$ and ω (in the body-fixed frame).

¹This is the convention of Goldstein's Classical Mechanics and Wiki; our textbook makes this second rotation about the y' axis with the warning that it is not standard. I'm going here with the standard

$$\omega = \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix} + \mathcal{M}_{\psi}^{-1} \begin{pmatrix} \dot{\theta} \\ 0 \\ 0 \end{pmatrix} + \mathcal{M}_{\psi}^{-1} \mathcal{M}_{\theta}^{-1} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix} \qquad \begin{array}{c} \text{Frame} \\ \text{Frame} \\ \text{(5)} \end{array}$$

$$(5)$$

$$Milhametrica = \begin{pmatrix} \dot{\phi} \sin(\psi) \sin(\theta) + \dot{\theta} \cos(\psi), \ \dot{\phi} \cos(\psi) \sin(\theta) - \dot{\theta} \sin(\psi), \ \dot{\phi} \cos(\theta) + \dot{\psi} \end{pmatrix} \qquad (6)$$

Given ω in the body-fixed frame it's easy (for *Mathematica*) to calculate the kinetic energy:

$$T = \frac{1}{2} \omega \cdot \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_1 & 0 \\ 0 & 0 & I_3 \end{pmatrix} \cdot \omega$$

$$= \frac{1}{2} I_1 \left(\dot{\phi}^2 \sin^2(\theta) + \dot{\theta}^2 \right) + \frac{1}{2} I_3 \left(\dot{\phi} \cos(\theta) + \dot{\psi} \right)^2$$
(8)

The problem at hand is *free* precession...no external forces or potential energy; the Lagrangian is just the kinetic energy T. Notice that ϕ and ψ are cyclic (a.k.a., ignorable) coordinates so the corresponding canonical (a.k.a., generalized) momenta are constants:

$$p_{\psi} = \frac{\partial T}{\partial \dot{\psi}} = I_3 \left(\dot{\phi} \cos(\theta) + \dot{\psi} \right) \tag{9}$$

$$p_{\phi} = \frac{\partial T}{\partial \dot{\phi}} = I_3 \cos(\theta) \left(\dot{\phi} \cos(\theta) + \dot{\psi} \right) + I_1 \dot{\phi} \sin^2(\theta) = p_{\psi} \cos(\theta) + I_1 \dot{\phi} \sin^2(\theta) \quad (10)$$

Comparing to Eq. (6), see that $p_{\psi} = L_3$ (i.e., the angular momentum in the body-fixed z direction); at the end of this document we discovery $p_{\phi} = L_z$ (i.e., the angular momentum in the inertial frame z direction). Using these (constant) momenta we can rewrite the kinetic energy much as in a Hamiltonian (but we will leave $\dot{\theta}$ alone):

$$T = \frac{1}{2} I_1 \dot{\theta}^2 + \frac{(p_{\phi} - p_{\psi} \cos(\theta))^2}{2I_1 \sin^2(\theta)} + \frac{p_{\psi}^2}{2I_3} = \frac{1}{2} I_1 \dot{\theta}^2 + V(\theta)$$

This expression now just involves constants and θ and $\dot{\theta}$; furthermore it is itself a constant. The usual logic of 1d conservation of energy applies to θ : turning points, equilibrium points, etc. In particular the minimum of $V(\theta)$ must be an equilibrium point where $\dot{\theta} = 0$. Working in terms of $c = \cos \theta$ note:

$$V(c) \propto \frac{(p_{\phi}-p_{\psi}c)^2}{1-c^2} + {
m constant}$$
 be the case as

and V'=0 has two solutions: $c=p_{\phi}/p_{\psi}$ and $c=p_{\psi}/p_{\phi}$ The first solution results in $\dot{\phi}=0$ in addition to $\dot{\theta}=0$. Applying those results to ω see that ω (and hence L) are entirely along the body-fixed 3 axis. This is an object spinning in space with no additional motion. The kinetic energy is simply: $p_{\psi}^2/(2I_3)$ —the kinetic energy of rotation just about the body-fixed 3 axis.

The second solution is more interesting. Using the constant values of p_{ψ} , p_{ϕ} , $\cos \theta$ find the values of $\dot{\phi}$ and $\dot{\psi}$:

Thus a free body moves with

$$\psi = -\cos\theta_0 \frac{I_3 \omega_3}{I_1} t$$

$$\psi = -\cos\theta_0 \frac{I_3 - I_1}{I_3} \dot{\phi}_0 t = -\frac{I_3 - I_1}{I_1} \omega_3 t$$
(11)
$$(12)$$
(13)

solves the equations of motion. Note that (θ, ϕ) define the direction of the body-fixed 3 axis; evidently it is inclined (at θ_0) and rotating at rate $\dot{\phi}_0$. In the body frame,

$$\omega = \left(\frac{p_{\phi} \sin \theta_0}{I_1} \sin \psi, \frac{p_{\phi} \sin \theta_0}{I_1} \cos \psi, \frac{p_{\psi}}{I_3}\right)$$
 (14)

2

i.e., ω_3 has a constant value of p_{ψ}/I_3 while ω_{\perp} is rotating at rate $\dot{\psi}$ and has constant magnitude $p_{\phi} \sin \theta_0/I_1$.

If we transform L from the body-fixed frame back into the inertial frame and substitute in the now know values for $\dot{\psi}$, $\dot{\phi}$ and $\dot{\theta} = 0$.

mphi.mtheta.mpsi.L
Simplify[%]
% /. {dphi->Pphi/I1, dpsi->Cos[theta](I1/I3-1)Pphi/I1,dtheta->0}
Simplify[%]

 $Out[24] = \{0, 0, Pphi\}$

We conclude that this solution has L in the inertial frame aligned with the z axis.

As stated above the fact that $L_z = p_{\phi}$ is true in general:

mphi.mtheta.mpsi.L
Collect[%[[3]],{I1,I3},Simplify]

Out[28] = I3 Cos[theta] (dpsi + dphi Cos[theta]) + dphi I1 Sin[theta]

where you'll notice this result is exactly p_{ϕ}

Conclude. Precession for and as L->0

Precession to gue to gue to gue to precession

To gue to purchase precession for and as L->0

Precession rate -> 00

Precession rate -> 00

BUT... We know small L gyros act like pendulum.

Seek better explanation of motion. Enla Angles again.