
Physics 341: E&M CLASS 39 Spring 2020

1. An ideal capacitor consists of two circular plates of radius a
separated by a distance d surrounded by vacuum. Assume the
E-field is uniform between the plates (i.e., neglect the fringing
field at the edge of the plates). The capacitor is being charged
by a constant current I.

(a) Find the electric field between the plates as a function of
time.

(b) Find the displacement current density between the plates.
Using Ampère’s law find the magnetic field ~B(r) between
the plates (i.e., for any r < a) generated by the displace-
ment current. Clearly state or show the direction of ~B(r).

(c) Find the Poynting vector on the circumference of the ca-
pacitor. Is energy entering or leaving the capacitor?

(d) Integrate ~S · n̂ over the cylindrical edge of the capacitor
to find the energy flowing into the capacitor. Show that
the result is equal to the time rate of change in the electric
energy stored between the capacitor plates. (Use the elec-
tric energy density 1

2
~E · ~D to find the total electric energy

between the plates.)
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2. Consider an infinite solenoid with radius R and N turns per meter filled with linear magnetic
material (relative permeability Km ≫ 1). The current flowing around the solenoid is increasing,
producing an increasing magnetic field which I name Ḃ.

(a) Calculate the magnetic energy stored in a length ℓ of the solenoid.

(b) The changing magnetic field will induce an electric field. Find ~E everywhere (inside and
outside the solenoid). Provide a drawing that shows the direction of ~E.

(c) Using ~E and ~H just inside the solenoid, calculate the Poynting vector (direction and
magnitude).

(d) Show that the rate of increase in the magnetic energy in a length ℓ of the solenoid matches
the rate of energy inflow via the Poynting vector.

3. The z = 0 plane is the boundary between two materials: the region of space with z > 0 is
vacuum, the region with z < 0 has g = 0, ǫ = 4ǫ0 and µ = 1000µ0. The boundary carries
a surface charge density of σf = 8.85 × 10−8 C/m2 and a surface current (flowing in the x

direction) of jf = 103 A/m. On the vacuum side of the boundary ~E = 103ĵ+ 104k̂ V/m, and
~B = −10−4ĵ + 10−5k̂ T. Find ~E and ~B inside the material. (ǫ0 = 8.85 × 10−12 C2/(N ·m2),
µ0 = 4π × 10−7 N/A2 )
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4. Consider the following electric and magnetic fields (in spherical coordinates):

E = −
pk2 sin θ ei(kr−ωt)

4πǫ0r
θ̂

B = −
pµ0ωk sin θ e

i(kr−ωt)

4πr
φ̂

where ω/k = c and p (electric dipole moment) is a constant. (Note that’s kr not k · r and I
mean to take the real part of the rhs). FYI: this is called electric dipole radiation.

(a) What are the units of p, k, and ω? Show that the resulting E,B have proper units.

(b) Plug the above into Maxwell’s equations in vacuum (i.e., ρ = 0 and J = 0). Which are
satisfied? (Not all of them are, but for k ≫ 1/r (i.e., large r), I’d say: “close enough”.)

(c) Note that these fields fall off like 1/r and hence the power through a distant surface
r̂ dA = r̂ r2dΩ in a particular direction (θ, φ) is independent of r allowing us to talk about
the power per solid angle going in a particular direction. Calculate the time-average
Poynting vector (〈S〉) as a function of direction. Describe (words) the distribution of this
light. How much total (all directions) light energy would leave a large radius sphere per
second?

(d) A large distance from the origin on the positive x axis, the above E and B fields will look
a bit like a plane wave:

E = E0 exp (i(kx− ωt))

B = B0 exp (i(kx− ωt))

with E0, B0 falling off like 1/r. Describe the directions of E0, B0 in rectangular coordi-
nates (xyz).

5. To show: given E,B that solve Maxwell’s Equations in vacuum, you can create a new solution
to Maxwell’s Equations in vacuum essentially by adjusting units and swapping E ↔ B, in
particular:

Bnew = E/c

Enew = −cB

Note that S is invariant under this operation and that any such solution (fields without sources)
must essentially be a wave.


