
Physics 341: E&M EXAM 1 2013 Feb 7

1. An azimuthally symmetric voltage has been placed on the surface of the sphere:

V (θ) = V0 cos2 θ

where V0 is a given constant. Find the resulting voltage φ inside and outside the sphere.

This is a rather long problem, so let me give you some initial help. Since the problem is
azimuthally symmetric and φ must satisfy Laplace’s equation, I know:

φin(r, θ) =
∑

n=even
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φout(r, θ) =
∑
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where A
n
and C

n
are currently undetermined constants, φin gives φ for r < R, and φout

gives φ for r > R.

(a) Explain why (words!) these particular formulas must hold. I.e., what is the general
case and how/why does this problem simplify that general case.

(b) At the boundary (i.e., r = R) the following condition must hold:

φin(R, θ) = φout(R, θ) = V (θ)

I conclude from this condition that, for every n,

A
n
R2n+1 = C

n

Explain (words!) the basis for this conclusion. How do we go from one equation
(which involves a sum of an infinite number of terms) to an infinite number of
equations (one for every n)?

(c) The Mathematica command:

Table[Integrate[c^2 LegendreP[n,c],{c,-1,1}],{n,0,10}]

Produces the output:
{

2

3
, 0, 4

15
, 0, 0, 0, 0, 0, 0, 0, 0

}

. Use this result to write down
the first two non-zero terms (i.e., a couple of non-zero As and a couple of non-zero
Cs) of the formulas for φin(r, θ) and φout(r, θ).



2. Consider two conducting coaxial infinite cylindrical shells. The volume between these
shells is filled with dielectric (dielectric constant K); the remaining volume is vacuum.
The inner cylinder (of radius a) carries a net charge per length of +λ spread evenly
around its surface. The outer shell (of radius b) carries the opposite net charge per
length. (Note: the same charge per length with different surface areas means the σ are
the not same.)

(a) Use Gauss’ Law to find the electric field in the three regions: (i) r < a, (ii)
a < r < b, and (iii) b < r. Remember to report the direction of E and any
symmetry arguments you have used.

(b) Integrate E to find formulae for electric potential in those three regions (assume
that the electric potential is zero at the center of the cylinder and make sure φ is
continuous across boundaries).
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3. A half circle (radius R) is made of a wire with uniform charge per length λ. Find the
electric potential (voltage) and electric field vector at the center of the circle. Report
what you are using for r, r′ and dq. Directly on the figure above right: draw the vector
r
′ for the bit of charge labeled A and draw the vector r-r′ for the charge labeled B.
Show all steps required to connect the general formulas for φ and E to the integrals you
finally evaluate. (The integrals should not be hard to do.)

4. Consider the following three image charge problems:

(a) A point charge q is a distance d from an infinite conducting, grounded plane

(b) A point charge q is a distance d from the center of a conducting, uncharged sphere
(radius R; d > R)

(c) A uniform line charge λ is coaxial to and a distance d from the center of an infinite
conducting cylinder (radius R; d > R) carrying a net charge per length of −λ.

For each of these problems draw an appropriate set of image charges. (No proofs re-
quired, simply apply the results we proved in class.) In each case, report a formula
for the force on the charge. Carefully note in the above the words “grounded” and
“uncharged”. What is the difference?



5. The middle figure shows a contour graph of the potential (voltage) φ near the edge of
a pair of parallel conducting plates forming a capacitor. The plates are infinite in the z

directions (perpendicular to this page) and infinite in the y− direction (down the page).
The plate at x = 1 has potential +1; the plate at x = −1 has potential −1. The 11
contours shown are for φ = {−.99,−.8, ,−.6, . . . ,+.6,+.8,+.99}. The potential φ as a
function of x is plotted at several different y values: y = +.5 (just above the capacitor
edge); and y = −.5 and y = −1.5 (in part, inside the capacitor). Note that inside the
capacitor the potential is nearly a linear function of x.

(a) From the φ vs. x plots I conclude
that the surface charge densities
inside the capacitor at y = −.5
and y = −1.5 are much the
same, whereas the surface charge
density on the outside surface of
the (x = 1) plate at y = −.5 is
larger than surface charge den-
sity on the outside surface of the
plate at y = −1.5. Explain!
Hint: think E!

(b) Directly on the contour plot

draw several ~E-field lines, in-
cluding lines that go through the
points: (0,−2), (0, 0), and (0, 2).
Be sure to include the direction
of each ~E-field line. The electric
field at (0, 2) is smaller than that
at (0,−2). Explain how the con-
tour plot displays this fact.

(c) The bottom figure represents a
cut through the capacitor plates
in the vicinity of its top. Directly
on this diagram, show the direc-
tion of the electric field at the
points: (−1.01,−1), (−.99,−1),
(1.01,−1) and (.99,−1) (i.e.,
slightly to the right and left of
each plate at y = −1). Using
little + and – signs show how
the electric charge is distributed
in/on the plates.
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