Remarks: In dealing with spherical coordinates in general and with Legendre polynomials
in particular it is convenient to make the substitution ¢ = cos . For example, this allows
use of the following simplification of the orthogonality relationship:
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Since § = 7/2 (the equator) corresponds to ¢ = 0, symmetries that correspond to reflection
in the equatorial plane correspond to ¢ = —c¢ symmetry. So the statement

Po(=¢) = (=1)"Pu(c) (2)

reports that the n-even P, have even reflection symmetry whereas the n-odd P, have odd
reflection symmetry. Finally note that since # = 0 and 7 corresponds to ¢ = +1, the
statements P,(1) = 1 and P,(—1) = (—1)" report the behavior of P, along the positive
and negative z axes respectively.

As shown in the text, we can write an arbitrary azimuthally-symmetric solution to Laplace’s
equation in spherical coordinates as:

o(r,0) = Z <An7‘" + TS:'Ll) P, (cos6) (3)
n=0
or equivalently
00 Cn
o(r,c) = Z <An7~" + m) P,(c) (4)
n=0

Example 1: Consider the problem of finding ¢ inside a sphere (of radius R) where the
voltage on the surface of the sphere has been given as a known function V() (which we
will use in the form V'(¢) ). First, since nothing singular is happening at the origin, C;, = 0
for all n. The A,, are determined by the requirement that ¢ and V agree if r = R:

V(e) = ¢(R,c) = _ A R"Py(c) (5)
n=0

If we multiply both sides by P,,(c) and integrate ¢ from —1 to 1, we can calculate the lhs
(which of course depends on m) and the rhs simplifies because of orthogonality:
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V(e)Py(c) de = i AnR"/ P,(c)Py,(c) de = A R™
n=0
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For example, if the applied voltage is +V in the northern hemisphere and —V in the southern
hemisphere (an odd function of ¢), we can immediately conclude that for n even A4,, = 0,
and for n odd Mathematica says:
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In[1]:= A=2 Integrate[LegendreP[n,x],{x,0,1}]

Sqrt [Pi]
OQut[1]= —-——===——————
n 3+n
Gamma[l - -] Gamma[----- ]
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Mathematica has provided a complex answer! for a result that is just a simple rational
number. For your enjoyment, I'll produce a form I can better understand, but in the end
we’ll let Mathematica use its own result.

I’ll begin by reporting some properties of the Gamma function:

= zl(x) (9

= nl for n a positive integer (
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The last formula is for the shifted factorial?> or Pochhammer Symbol defined in class.

Note that n is odd which we will write as n = 2m — 1, so m = {1,2,3,...} corresponds to
n={1,3,5,...}.
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Back to Mathematica:

flr_,c_]=Sum[A (2 n +1)/2 r"n LegendreP[n,c],{n,1,21,2}]

ContourPlot [f [Sqrt[x~2+z~2],z/Sqrt[x"2+z~2]1]1,{x,0,.9},{z,-.9,.9%},

Contours -> {-.9,-.8,-.7,-.6,-.5,-.4,-.3,-.2,-.1,0,.1,.2,.3,.4,.5,.6,.7,.8,.9%},
ContourShading->False,RegionFunction->Function[{x, z, q},x"2+z"2<1 ],
AspectRatio->Automatic]

Example 2: Consider the problem of finding ¢ inside and outside a sphere (of radius R)
where the surface charge density on the surface of the sphere has been given as a known

Part of the reason for this complex formula is that Mathematica is showing that n even produces zero
result. However it doesn’t really matter if you don’t recognize the answer as Mathematica can quickly
produce the rational number for any n you want.

ZNote: (1), = n! more generally (), is n terms multiplied together, starting with = with successive
terms one more than the previous.



function o (6) (which we will use in the form o(c)). First, since nothing singular is happening
at the origin, for the inside solution C,, = 0 for all n. Since the potential must approach
zero as r — oo, for the outside solution A,, = 0 for all n. Thus:

Z Apr"Pp(c) forr <R
n=0

(;5(7‘, 9) = - (15)
Z Cn P,(c) forr>R

Tn—i—l

n=0

Continuity of ¢ at r = R produces the requirement:

Ch

AR = o

(16)

The surface charge density can be related to the discontinuity in the radial component of
the electric field:

o) = € (0dli=p- — 01 |r=p+) (17)
- eoz(nAnR”_l+(n+1)CnR_(”+2)>Pn(c) (18)
n=0
= Eoi(Qn—i-l)Aan_an(C) (19)
n=0
(20)

The usual ‘Fourier Trick’ (multiply both sides by P,,(c) and integrate from —1 to 1 collapsing
the sum to a single term) allows A,, to be calculated:
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_ m—-1__ < m—1
/1 o(c)Pp(c) de =€ep(2m +1)AnR Gy— €02AmR (21)

Example 3: Often you can calculate ¢ along the z axis, but the off-axis calculation is
difficult or impossible. However you can expand ¢(z) to produce the full ¢(r,c) by a trick.
Taylor expand ¢(z) to obtain a power series expansion:

$(z) = an2" (22)
n=0

This formula must agree with the Legendre expansion evaluated on the z axis:
o o
o(r,c) = Z Apr"Pp(c) = Z anz" on the z axis (23)
n=0 n=0

The fact that on axis ¢ = £1 and P,(41) = (+1)" allows easy comparison between these
two series. Agreement requires A,, (useful for ¢ off-axis) equals a,, (determined only knowing
¢ on-axis).

For example, the potential on the z-axis for a ring charge (radius R, total charge Q) is
clearly

el 0 @R

n!

0) = o [P R = 2

TEQ ~ dmegR [1 + (Z/R)ﬂ



we can conclude ) )
S (E)n/z for n even
An — 471'60 R (n/2)' (25)

0 for n odd

flr_,c_]=Sum[(-1) " (n/2) Pochhammer[1/2, n/2] r"n LegendreP[n,c]l/(n/2)!,{n,0,20,2}]

ContourPlot [f [Sqrt [x"2+z"2] ,z/Sqrt [x"2+z"2]],{x,0,.9},{z,-.9, .9},Contours->16,
ContourShading->False,RegionFunction->Function[{x, z, q},x"2+z"72<.8 ],
PlotRangePadding->None,AspectRatio->Automatic]
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Figure 1: Isopotential contours for Example 1 (left) and Example 3 (right)



Homework 1: A physicist aims to subject a sample to a pure quadrupole field (n = 2)
inside a spherical cavity. The plan is to charge the top and bottom caps of the sphere to
1 V and the remaining band around the equator to a potential of —1 V. Because the applied
voltage V(6) is symmetric, terms A, = 0 for n odd. The first important term will then
be quadrupole Ay (Ag corresponds to a constant voltage and so makes no electric field).
It would be nice (but not possible) to make Ay the only non-zero term. The best we can
do is make A4 = 0. Problem: Find the band angle, 6, that makes A4 = 0. Find Ag in
this circumstance. Find the values: Ag, As and Ag. Put the pieces together to express the
potential inside the sphere. Have Mathematica produce a contour plot of that voltage.

Hint:

A4o</+1 V(e)Py(c) dc:2{—/06b Py(c) dc~|—/C: Palc) dc} (26)

-1

Use Mathematica (or a root-finding calculator) to find the value ¢, to make this quality
ZETO.

1v\

Homework 2: In a region where there are no currents flowing, we can define a magnetic
potential that is exactly analogous to the electric potential:

B=-V¢ where: V2¢ =0 (27)

For a pair of Helmholtz coils (two identical coaxial coils with centers separated by R; recall
Phys 200 labs with them), the magnetic potential along the axis is given by:

b(2) = 5V5R z—R/2 z+ R/2
-~ 6 |VE S G-RRP VR (24 RJ2P

(28)

Recall from the 200 lab that the spacing of the coils is designed to produce a particularly
uniform field between the coils, and if you reverse the current in one coil you produce a
diverging B with B = 0 at the center (in short a quadrupole field). Use Mathematica to
series expand ¢ around the origin. Use that series to produce ¢(r,cosf) in a region near
the origin. Make a contour plot of ¢ to confirm that it is nearly uniform.

If you have reversed coils a distance b above and below the origin, ¢ is given by:

z—0b z+b

o) = VE2+(z-b2 R+ (210

(29)

What value of b will produce a particularly pure quadrupole field? Make a contour plot of
¢ to confirm that it is nearly quadrupole.



Homework 3: Consider a problem analogous to Helmholtz coils but in electrostatics with
charged rings. You have a ring (radius R, centered on the z axis, in a plane parallel to the
xy plane) with charge +@Q at distance b above the origin, and a similar ring with center at
z = —b with charge —@Q. Find b that will produce the most uniform possible E field in the
vicinity of the origin. Explain why the voltage on the z axis is given by:

Q 1 1
dmeo | \/RZ+ (z - b2 VRET (2 +0)?

¢(z) = (30)

Expand this result in a power series in z. The term linear in z corresponds to 7P (c) (why?)
and further terms produce a non-uniform E. Determine the value of b which makes as many
of these further terms zero. Make a contour plot of ¢(r,cosf) (for R = 1) to confirm that
it is nearly uniform.

Example 4: In the case of cylindrical coordinates where ¢(r, ) (and not z), we have:

o(r,0) = Ag + Coln(r) + Z (AnT” + Cnr_") (an cos(nb) + ¢, sin(n@)) (31)

n=1

Note that A, C,,an, ¢, are not independent: for example you could multiply both A4,,C,
by five and divide both a,, ¢, by five and have exactly the same solution. Most commonly
one of the terms in parenthesis is reduced to a single term. As usual we have orthogonality

: .
/ cos(nf)sin(mb) dd = 0 (32)
/+7T cos(nf) cos(mb) dd = 7 dpn, (33)
/+7T sin(nf) sin(mb) df = 7 O (34)

We seek ¢ outside a cylinder of radius R on which the potential is known to be
V(6) = cos?(6) (35)

Since the source extends to infinity, we cannot in general take ¢ at infinity to be zero;
thus the meaning of “the potential” on the cylinder is ambiguous; a convenient solution
is to define the constant Ay = A — CoIn(R) (a further benefit is the result makes sense
dimensionally).

[e.e]

o(r,0) = Al + Coln(r/R) + Z (Apr™ + Crr™™) (ay cos(nb) + ¢, sin(nd)) (36)

Note that in this form the value of Cj has absolutely no effect on the value of the voltage
at r = R; A bit of thought should convince you that Cy is determined by the net charge-
per-length on the cylinder. (Recall: voltage for a line charge: ¢ = (—\/2mep) In(r).) We
will take Cy = 0.

Since the V() is even in 6, ¢, = 0; since the electric field should be regular at infinity
A, = 0. Thus:

o+ ZC’nr " cos(nf) (37)



Since ¢(R,#) must agree with V' (#) we have:
cos?(f) = ¢(R o+ Z Cp,R™" cos(nf) (38)

The C,, could now be determined using the “Fourier Trick”, but a faster way is to use a
trig identity to immediately write cos?(6) in terms of cos(nf):

1 1
2 e —
cos”(0) = 5 + 5 cos(26) o+ E CpR™™ cos(nf) (39)

Simple inspection (rather than integration, but of course integration produces the same
result):

1
5 = Ap (40)
0 = CiR 'cos(h) (41)
% cos(20) = CyR™%cos(26) (42)
and C,, = 0 for n > 2. So the final result is:
1
o(r,0) = 5 [1 + cos(26) (R/r)z] (43)

I hope it is immediately clear that this potential solves Laplace’s equation, agrees with V()
when r = R and represents a cylinder with a simple quadrupole.
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Example 5: Consider an infinite (in the z directions) rectangular gutter with cross-section
between (0,0) and (a,b). Three of the sides of the gutter are grounded; the fourth, (a,y)
with y € (0,b) has a specified voltage V' (y). Separation of variables yields a general solution:

_ o A, sin nmy\ sinh (T) m
y) ;::1 < b >s1nh(%) (44)

We have orthogonality in the form:

[ ()
sin (—=) sin
0 b



Requiring ¢(x,y) to agree with V(y) when = = a yields:
—b(ay) =S Ay sin (T
V) = é(a9) = 3 Ansin (59 (46)
With the “Fourier Trick” yielding:

/Ob V(y) sin (@) dy = % b A, (47)

Consider, for example, the case V(y) =1 (constant):

b my —cos ()] b
in () gy = |— b /| = 2 (=)™ 48
[ () v = | = [ (1)) (48)
0
So: h( )
4 1 . /nmy\ sin %
o(z,y) = — — sin - - (49)
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Figure 2: Clockwise from upper left: isopotential contours for Example 5, a slice of Example
5 ¢ along (z,.5), a slice of Example 5 ¢ along (1.9,y), isopotential contours for Example 4



