Class 5 - 3tl - hand out

8 Gauss: total flux = enclused charge $8 \times 10^{-12} =$

(34) Since $E_{y}=0$ $\stackrel{?}{\sim}$ $\stackrel{?}{\wedge}=\stackrel{?}{\sim}$ $\stackrel{?}{\sim}$ $\stackrel{?}{$

 22.8 • The three small spheres shown in Fig. E22.8 carry charges $q_1 = 4.00 \text{ nC}$, $q_2 = -7.80 \text{ nC}$, and $q_3 = 2.40 \text{ nC}$. Find the net electric flux through each of the following closed surfaces shown in cross section in the figure: (a) S_1 ; (b) S_2 ; (c) S_3 ; (d) S_4 ; (e) S_5 . (f) Do your answers to parts (a)–(e) depend on how the charge is distributed over each small sphere? Why or why not?

Figure £22.8

22.34 •• A cube has sides of length L = 0.300 m. One corner is at the origin (Fig. E22.6). The nonuniform electric field is given by $\vec{E} = (-5.00 \text{ N/C} \cdot \text{m})x\hat{\imath} + (3.00 \text{ N/C} \cdot \text{m})z\hat{k}$. (a) Find the electric flux through each of the six cube faces S_1 , S_2 , S_3 , S_4 , S_5 and S_6 . (b) Find the total electric charge inside the cube.

22.36 •• CALC In a region of space there is an electric field \vec{E} that is in the z-direction and that has magnitude $E = [964 \text{ N/(C} \cdot \text{m})]x$. Find the flux for this field through a square in the xy-plane at z = 0 and with side length 0.350 m. One side of the square is along the +x-axis and another side is along the +y-axis.