Physics 346: QM

Using your own head, notes, book, www.physics.csbsju.edu, *Mathematica* and questions to Kirkman, complete 4 of the following problems, one of each type (WKB, RR, TIPT, dTIPT). Your exam must be turned in by Wednesday, November 25, 5:30 P.M. unless you have made prior (before 23-Nov-2015) arrangements.

1. (dTIPT) Consider a particle-in-a-2*d*-box with V(x,y) = 0 for 0 < x < L and 0 < y < L and $V(x,y) = \infty$ elsewhere. The eigenenergies depend on two whole-number quantum numbers: n_x and n_y :

$$E = \frac{\pi^2 \hbar^2}{2mL^2} \left(n_x^2 + n_y^2 \right)$$

with corresponding orthonormal eigenfunction:

$$\psi_{n_x n_y}(x, y) = \frac{2}{L} \sin\left(n_x \pi x/L\right) \sin\left(n_y \pi y/L\right)$$

A perturbing 2d delta function potential is placed at the location (x, y) = (L/4, 2L/3):

$$V' = \lambda \, \delta(x - L/4) \, \delta(y - 2L/3)$$

Consider the first-order energy shift of the degenerate pair: $\psi_{12}(x, y) \& \psi_{21}(x, y)$. Find the matrix representing V' in this degenerate sub-space. Find the matrix's eigenvalues and vectors. Report the "good" wavefunctions and the corresponding approximate eigenenergy (accurate to first-order) for those "good" wavefunctions. FYI: $\sin(\pi/3) = \sin(2\pi/3) = -\sin(4\pi/3) = \sqrt{3}/2$, $\sin(\pi/4) = 1/\sqrt{2}$, $\sin(\pi/2) = 1$

- 2. (dTIPT) For homework you considered the Stark Effect for H, i.e., how the energy levels of the H-atom are affected by an electric field. We chose an electric field in the +z direction, which required a voltage: -zE. With a negative electron charge -e, the resulting perturbing potential energy was +eEz. For n = 3 we needed the nine degenerate states: $|300\rangle$, $|31-1\rangle$, $|310\rangle$, $|311\rangle$, $|32-2\rangle$, $|32-1\rangle$, $|320\rangle$, $|321\rangle$, $|322\rangle$ where we are using the notation $|n\ell m\rangle$ and the 9×9 matrix $\langle 3\ell'm'|z|3\ell m\rangle$. The energy levels should not be any different if the electric field is in the +x direction. (Note: see assignments.txt: Class 29 (2013) or handout for further details/wavefunctions.)
 - (a) Find the 9×9 matrix $\langle 3\ell' m' | x | 3\ell m \rangle$.
 - (b) Find its eigenvalues and eigenvectors. The eigenvalues should be exactly the same as for $\langle 3\ell'm'|z|3\ell m\rangle$. Note, however, that in both cases the eigenvalues are not distinct (e.g., there are three 0 eigenvalues).
 - (c) What critical problem is not automatically solved if these eigenvalues are degenerate (i.e., not distinct)?
 - (d) For $\langle 3\ell'm'|z|3\ell m \rangle$, because of the degeneracy, the critical problem was not automatically solved, nevertheless it was solved without any additional work because of a special factor. What was that factor? Why is that factor related to the taking the electric field in the z direction?
 - (e) Provide evidence that the critical problem is still present in the $\langle 3\ell'm'|x|3\ell m\rangle$ eigenvectors provided by *Mathematica*.

3. (TIPT) Consider a particle-in-a-box with V(x) = 0 for 0 < x < L and $V(x) = \infty$ elsewhere with orthonormal energy eigenfunctions

$$E_n = \frac{(q\hbar)^2}{2m}$$
 $u_n(x) = \sqrt{\frac{2}{L}}\sin(qx)$ where $q = \frac{n\pi}{L}$

A perturbing potential is placed at the center of the box:

$$V'(x) = \begin{cases} \lambda & |x - L/2| < b < L/2\\ 0 & \text{elsewhere} \end{cases}$$

(where λ is a constant), is applied. Write down an expression for the first-order energy shifts of an arbitrary state. Claim: \mathbb{E}_1 (first-order correction for the energy) for the ground state much larger than \mathbb{E}_1 for the first excited state... Why? Generally speaking which states will have large \mathbb{E}_1 and which small \mathbb{E}_1 ? What states *connect* to the ground state in the second-order energy shift calculation? The second-order energy shift involves an infinite sum. Calculate one (non-zero) term in the sum. (Show your steps or print out enough *Mathematica* code so I can determine exactly what you did.)

4. (TIPT) Consider a particle-in-a-2d-box with V(x, y) = 0 for 0 < x < L and 0 < y < Land $V(x, y) = \infty$ elsewhere. The eigenenergies depend on two whole-number quantum numbers: n_x and n_y :

$$E = \frac{\pi^2 \hbar^2}{2mL^2} \left(n_x^2 + n_y^2 \right)$$

with corresponding orthonormal eigenfunction:

$$\psi_{n_x n_y}(x, y) = \frac{2}{L} \sin\left(n_x \pi x/L\right) \sin\left(n_y \pi y/L\right)$$

Consider the effect of a constant (uniform) perturbing potential:

$$V'(x,y) = \lambda$$

on an arbitrary eigen state of the unperturbed system: $\psi_{n_x n_y}(x, y)$. Exactly calculate the first-order, second-order, and third-order energy shifts. (The equation for thirdorder energy shift is a footnote on page 256.) This problem is not as hard as it sounds.

- 5. (RR) The file morse.pdf #1 & #2
- 6. (WKB) The file morse.pdf #5
- 7. (RR) The file x4_rr+wkd.pdf #1
- 8. (WKB) The file x4_rr+wkd.pdf #2