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Quantum Mechanical Derivation of the Wallis Formula for π
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Abstract

A famous pre-Newtonian formula for π is obtained directly from the variational ap-

proach to the spectrum of the hydrogen atom in spaces of arbitrary dimensions greater

than one, including the physical three dimensions.

The formula for π as the infinite product

π

2
=

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7 · · · (1)

was derived by John Wallis in 1655 [1] (see also [2]) by a method of successive interpolations.
While several mathematical proofs of this formula have been put forth in the past (many just
in the last decade) using probability [3], combinatorics and probability [4], geometric means
[5], trigonometry [6, 7], and trigonometric integrals [8], there has not been in the literature a
derivation of Eq. (1) that originates in physics, specifically in quantum mechanics.

It is the purpose of this paper to show that this formula can in fact be derived from a vari-
ational computation of the spectrum of the hydrogen atom. The existence of such a derivation
indicates that there are striking connections between well-established physics and pure mathe-
matics [9] that are remarkably beautiful yet still to be discovered.

The Schrödinger equation for the hydrogen atom is given by

Hψ =

(

− h̄2

2m
∇2 − e2

r

)

ψ = Eψ,

with the corresponding radial equation obtained by separation of variables being

H(r)R(r) =

[

− h̄2

2m

(

d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2

)

− e2

r

]

R(r) = ER(r).

Using the trial wave function
ψαℓm = rℓe−αr2Y m

ℓ (θ, φ), (2)
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where α > 0 is a real parameter and the Y m
ℓ (θ, φ) are the usual spherical harmonics, the

expectation value of the Hamiltonian is found to be given by

〈H〉αℓ ≡ 〈ψαℓm|H(r)|ψαℓm〉
〈ψαℓm|ψαℓm〉

=
h̄2

2m

(

ℓ+
3

2

)

2α− e2
Γ(ℓ+ 1)

Γ(ℓ+ 3

2
)

√
2α .

As a consequence of the Y m
ℓ (θ, φ) in Eq. (2), the function ψαℓm is orthogonal to any energy

and angular momentum eigenstate that has a value for angular momentum different from ℓ.
Therefore the minimization of 〈H〉α with respect to α, namely

〈H〉ℓmin = −me
4

2h̄2
1

(ℓ+ 3

2
)

[

Γ(ℓ+ 1)

Γ(ℓ+ 3

2
)

]2

, (3)

gives an upper bound for the lowest energy state with the given value of ℓ.
The well-known exact result for the energy levels of hydrogen is

Enr ,ℓ = −me
4

2h̄2
1

(nr + ℓ+ 1)2
,

where nr = 0, 1, 2, . . ., so that the lowest energy eigenstate for a given ℓ is the one with nr = 0,
namely

E0,ℓ = −me
4

2h̄2
1

(ℓ+ 1)2
.

The accuracy of approximation (3) is thus displayed in the ratio

〈H〉ℓmin

E0,ℓ

=
(ℓ+ 1)2

(ℓ+ 3

2
)

[

Γ(ℓ+ 1)

Γ(ℓ+ 3

2
)

]2

,

a quantity that approaches unity with increasing ℓ [10]. This follows from the fact that in the
large ℓ limit the trial solution and the exact result correspond to strictly circular orbits. The
circularity of the trial solution orbits at large ℓ is a consequence of the fact that the uncertainty
in r2, measured in units of mean square radius, is given by

[〈r4〉αℓ − (〈r2〉αℓ)2]
1

2

〈r2〉αℓ
=
(

ℓ+
3

2

)−
1

2

,

which approaches 0 at large ℓ. Both the trial solution orbits and the exact orbits are then
identical to those of the Bohr model in the large ℓ limit, as expected from Bohr’s correspondence
principle.

Therefore one obtains the limit

lim
ℓ→∞

〈H〉ℓmin

E0,ℓ

= lim
ℓ→∞

(ℓ+ 1)2

(ℓ+ 3

2
)

[

Γ(ℓ+ 1)

Γ(ℓ+ 3

2
)

]2

= 1 . (4)



This can be seen to lead to the Wallis formula for π. To this end, one invokes the relations
zΓ(z) = Γ(z + 1), Γ(ℓ+ 1) = ℓ!, and Γ(1

2
) =

√
π, which bring Eq. (4) to the form

lim
ℓ→∞

[

(ℓ+ 1)!√
π · 1

2

3

2

5

2
· · · 2ℓ+1

2

]2
1

ℓ+ 3

2

= 1

or alternatively
π

2
= lim

ℓ→∞

ℓ+1
∏

j=1

(2j)(2j)

(2j − 1)(2j + 1)
, (5)

i.e., the Wallis formula for π, as given by Eq. (1).
The analogous computation in arbitrary dimensions also leads to the same formula, with

slightly different forms for even and odd dimensions. The radial equation for the hydrogen atom
in N dimensions is [11]

HNR =

[

− h̄2

2m

(

d2

dr2
+
N − 1

r

d

dr
− ℓ(ℓ+N − 2)

r2

)

− e2

r

]

R(r) = ER(r),

where h̄2ℓ(ℓ + N − 2), ℓ = 0, 1, 2, . . . is the spectrum of the square of the angular momentum
operator in N dimensions [12, 13]. The same trial wave function as in three dimensions with
the Y m

ℓ (θ, φ) of Eq. (2) replaced by its N -dimensional analog [11, 12] gives

〈H〉N,ℓ
min = −me

4

2h̄2
1

(ℓ+ N
2
)

[

Γ(ℓ+ N−1

2
)

Γ(ℓ+ N
2
)

]2

. (6)

The exact result [11]

EN
nr ,ℓ

= −me
4

2h̄2
1

(nr + ℓ+ N−1

2
)2
,

in the limit ℓ→ ∞ with nr = 0 yields

lim
ℓ→∞

〈H〉N,ℓ
min

EN
0,ℓ

= lim
ℓ→∞

(ℓ+ N−1

2
)2

(ℓ+ N
2
)

[

Γ(ℓ+ N−1

2
)

Γ(ℓ+ N
2
)

]2

= 1. (7)

For N = 2k+1, where k is a positive integer (i.e., the case of odd dimensions), this becomes

lim
ℓ→∞

(ℓ+ k)2

(ℓ+ k + 1

2
)

[

Γ(ℓ+ k)

Γ(ℓ+ k + 1

2
)

]2

= 1

which is identical to Eq. (4) once the substitution ℓ → ℓ + k − 1 is made there, leading again
to the Wallis formula. For N = 2k, where k is again a positive integer (i.e., the case of even
dimensions), Eq. (7) becomes

lim
ℓ→∞

(ℓ+ k − 1

2
)2

(ℓ+ k)

[

Γ(ℓ+ k − 1

2
)

Γ(ℓ+ k)

]2

= 1,

which is readily brought to the form

2

π
= lim

ℓ→∞

ℓ+1
∏

j=1

(2j − 1)(2j + 1)

(2j)(2j)
, (8)

the reciprocal form of the Wallis formula.
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[5] J. Wästlund, “An elementary proof of Wallis’s product formula for pi”, Linköping studies
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