4. (WKB) Kirkman writes the WKB integral in the form:

b 2m(E — V(x))
f k(z)dz = w(n — something) where: k(z) = T (1)
a 1

(a) For each of the below four plots of V(x) report the values for a, b, and “something”
if we are considering bound state (or quasi bound state) wavefunctions ¢ with an
energy, E, of 50.

(b) The lower left potential for E = 50 has the “quasi bound state” mentioned above.
How does this quasi bound state diﬂ';\l from the other states which are truly bound
states? — wil  FuNwel O~ (2o s

(c) For each of the below potentials, assume that the integral of Eq. 1 produces n = 10 @ w¥t 5‘] v
for E = 50. Sketch the corresponding WKB wavefunction v directly on each of i £ v,
the below plots properly displaying changing wavelength & amplitude and behavior 2 >**
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5. (WKB) Using the WKB approximation, find the formula for the eigenenergies E of a

simple harmonic oscillator:
2
P |
H=—4-mwz
2m F 2

The following integral may be of use:
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