
Physics 360 Tree Wilt: LDA, QDA & logistic regression November 2019

Consider a remote sensing study1 that involved detecting diseased trees in Quickbird2 satellite imagery.
Aim: find the class of trees (wilted/not wilted) based on the color of emitted light, as viewed from
orbit. Load the training and testing datasets which can be found in the msc folder online.

> D=read.csv("wilt_training.csv")

> D2=read.csv("wilt_testing.csv")

> str(D)

Find the following columns in both the training and test datasets

class — Factor w/ 2 levels “n”,“w”: wilted or not

GLCM — num: GLCM mean texture (panchromatic band)

Green — num: mean in green band (520–600 nm)

Red — num: mean in red band (630–690 nm)

NIR — num: mean in near IR band (760–890 nm)

SD — num: standard deviation in panchromatic band

This data has what should be an unusual problem: the wilted fraction in the training set is much less
than the wilted fraction in the testing set. In the homework version of this problem you will work
to develop fewer and more discriminating features than those in the raw file and to ‘push’ the KNN
analysis to sense more wilted trees without harming too much the overall accuracy. This is the final
result:

predict2 n w

FALSE 276 62

TRUE 37 125

> (276+125)/500

[1] 0.802

> 125/187

[1] 0.6684492

an overall accuracy of 80.2% and a power of 66.8%.

Today we will work to better those numbers using Linear Discriminant Analysis and Quadratic Dis-
criminant Analysis. Following the process outlined in the homework the training set has become:

> str(dscaled)

’data.frame’: 4339 obs. of 4 variables:

$ NIR : num -0.76069 -1.1636 -0.36407 -1.65462 -0.00746 ...

$ SD : num -0.386 -0.746 -0.221 -0.904 -0.665 ...

$ diff : num 3 2.84 3.32 2.68 3.12 ...

$ class: Factor w/ 2 levels "n","w": 2 2 2 2 2 2 2 2 2 2 ...

and the testing set is called d2scaled. Functions lda and qda are in the MASS library3; they use a
formula argument.

1Johnson, B., Tateishi, R., Hoan, N., 2013. International Journal of Remote Sensing, 34 (20), 6969–6982.
2https://en.wikipedia.org/wiki/QuickBird
3The name comes from the textbook: “Modern Applied Statistics with S” (Springer, 4th, 2003)



> library(MASS)

> lda1=lda(class~diff+SD+NIR,data=dscaled)

> lda1

Call:

lda(class ~ diff + SD + NIR, data = dscaled)

Prior probabilities of groups:

n w

0.98294538 0.01705462

Group means:

diff SD NIR

n -0.05236526 0.007236775 0.01307415

w 3.01807860 -0.417092500 -0.75353054

Coefficients of linear discriminants:

LD1

diff 1.1865514

SD -0.1661454

NIR 0.2888952

> lda.predict=predict(lda1,d2scaled)

> table(lda.predict$class,d2scaled$class])

n w

n 303 95

w 10 92

> (303+92)/500

[1] 0.79

> (92)/187

[1] 0.4919786

SO with the initial attempt the accuracy is comparable to KNN but the power is worse. LDA produces
a parameter x which is essentially the distance from the plane that divides the cases. (Note that we are
about to look at the test dataset class and essentially train on it, something that we should avoid in
real life.) You can see that there is good separation with predict drawing the separating line at about
2.85.

> hist(lda.predict$x[d2scaled$class=="n"],breaks=seq(-8,6,.5),col=rgb(0,0,1,.25))

> hist(lda.predict$x[d2scaled$class=="w"],breaks=seq(-8,6,.5),col=rgb(1,0,0,.25),add=T)

It should be clear that reducing that dividing line will add more actual w (red) than n (blue) into the
predicted w class.

> table(lda.predict$x>2.5,d2scaled$class)

n w

FALSE 298 71

TRUE 15 116

> (298+116)/500



[1] 0.828

> 116/187

[1] 0.6203209

> table(lda.predict$x>2.25,d2scaled$class)

n w

FALSE 293 53

TRUE 20 134

> (293+134)/500

[1] 0.854

> 134/187

[1] 0.7165775

> table(lda.predict$x>2.0,d2scaled$class)

n w

FALSE 281 29

TRUE 32 158

> (281+158)/500

[1] 0.878

> 158/187

[1] 0.8449198

> table(lda.predict$x>1.75,d2scaled$class)

n w

FALSE 270 16

TRUE 43 171

> (270+171)/500

[1] 0.882

> 171/187

[1] 0.9144385

> table(lda.predict$x>1.5,d2scaled$class)

n w

FALSE 251 9

TRUE 62 178

> (251+178)/500

[1] 0.858

> 178/187

[1] 0.9518717

The trade-off between true positives and false positives as the dividing line is moved is graphically
displayed in the ROC (receiver operating characteristics) curve discussed in the textbook (ISLR p. 147).
All but the first case beat KNN. Note that in the last case the overall accuracy has been reduced.

Now we try Quadratic Discriminant Analysis.

> qda1=qda(class~diff+SD+NIR,data=dscaled)



> qda1

Call:

qda(class ~ diff + SD + NIR, data = dscaled)

Prior probabilities of groups:

n w

0.98294538 0.01705462

Group means:

diff SD NIR

n -0.05236526 0.007236775 0.01307415

w 3.01807860 -0.417092500 -0.75353054

> qda.predict=predict(qda1,d2scaled)

> table(qda.predict$class,d2scaled$class)

n w

n 297 88

w 16 99

> (297+99)/500

[1] 0.792

> 99/187

[1] 0.5294118

> names(qda1)

[1] "prior" "counts" "means" "scaling" "ldet" "lev" "N"

[8] "call" "terms" "xlevels"

> names(qda.predict)

[1] "class" "posterior"

> summary(qda.predict$posterior)

n w

Min. :0.0000692 Min. :0.0000000

1st Qu.:0.5972171 1st Qu.:0.0000061

Median :0.9931003 Median :0.0068997

Mean :0.7671353 Mean :0.2328647

3rd Qu.:0.9999939 3rd Qu.:0.4027829

Max. :1.0000000 Max. :0.9999308

Note that raw LDA beat raw QDA. We can push QDA as we did LDA, but its a bit more complex.
qda.predict$posterior gives separate p values for the two classes, and selects the largest as the
winner. We can bias the result by requiring a difference greater than zero.

> table(qda.predict$posterior[,1]-qda.predict$posterior[,2]<.9,d2scaled$class)

n w

FALSE 271 32

TRUE 42 155

> (271+155)/500

[1] 0.852

> 155/187

[1] 0.828877

But this still does not beat LDA.



While I could proceed as above: train using the unbalanced data and test and push on balanced data,
instead, for logistic regression, I will reverse: train on d2scaled and test on dscaled. We use glm (gen-
eralized linear model) much as we did lm, but with logistic family selected binomial(link=’logit’).

> log1=glm(class~.,family=binomial(link=’logit’),data=d2scaled)

> out=predict(log1,type="response")

> table(out>.5,d2scaled$class)

n w

FALSE 284 26

TRUE 29 161

> (284+161)/500

[1] 0.89

> 161/187

[1] 0.8609626

The above accuracy and power are pretty good, but they are for the training set this time. The output
of predict is a vector of probabilities (by default for the training set). We can gain some insight into
an appropriate cut-off from the ROC.

> library(ROCR)

> pred <- prediction(out,d2scaled$class)

> str(pred)

pred has a complex structure—its loaded for many different plots— but we don’t have to understand
it to use it.

> roc.perf = performance(pred, measure = "tpr", x.measure = "fpr")

> plot(roc.perf)

> abline(a=0, b= 1)

> acc.perf = performance(pred, measure = "acc")

> plot(acc.perf)

> auc.perf = performance(pred, measure = "auc")

> auc.perf@y.values

[[1]]

[1] 0.9528797

If we reduce the cut-off, we increase the power and the false detection rate and reduce the accuracy.
We now test using dscale (unbalanced data)

> out2=predict(log1,newdata=dscaled,type="response")

> table(out2>.25,dscaled$class)

n w

FALSE 3912 1

TRUE 353 73

> pred <- prediction(out2,dscaled$class)

> roc.perf = performance(pred, measure = "tpr", x.measure = "fpr")

> plot(roc.perf)

> acc.perf = performance(pred, measure = "acc")

> plot(acc.perf)


