
Physics 360 Remote Sensing: Tree Wilt November 2019

Consider a remote sensing study1 that involved detecting diseased trees in Quickbird2 satellite imagery.
Aim: find the class of trees (wilted/not wilted) based on the color of emitted light, as viewed from
orbit. Load the training and testing datasets which can be found in the msc folder online.

D=read.csv("wilt_training.csv")

D2=read.csv("wilt_testing.csv")

str(D)

Find the following columns in both the training and test datasets

class — Factor w/ 2 levels “n”,“w”: wilted or not

GLCM — num: GLCM mean texture (panchromatic band)

Green — num: mean in green band (520–600 nm)

Red — num: mean in red band (630–690 nm)

NIR — num: mean in near IR band (760–890 nm)

SD — num: standard deviation in panchromatic band

A little reconnaissance indicates a problem with these datasets:

table(D$class)

table(D2$class)

The authors say:

we had a highly imbalanced training data set, with training data for the target class com-
prising only 1.7% of the total training set. Highly imbalanced training data sets have been
shown to result in lower classification accuracy for the minority class

The fancy method they discussed eventually achieved an accuracy greater than 90%; you will not hit
that figure. We begin with the most naive approach: KNN raw everything.

library(class)

predict=knn(D[,2:6],D2[,2:6],D[,1],k=1)

table(predict,D2[,1])

(Q1) Record (copy & paste) the table. Report the accuracy (percent on the table diagonal, i.e., those
properly predicted) and the power (percent of the actually wilted predicted to be wilted) for k = 1, 3, 5.

For all of the following models when the request is to report the ‘accuracy’ of a model, report all of the

above (table, accuracy and power). Evidently k = 1 (which you would almost never use in practice) has
the best accuracy: with more included neighbors we start to approach the (low) wilted fraction in the
training set. The effect of more neighbors is to move true positives into false negatives; a smaller effect
is to move false positives into true negatives, i.e., fewer positives generally. Note that relative tolerance
for false positives vs. false negatives depends on the situation. If, for example, limited resources requires
you to treat a fixed (limited) number of trees, you may be interested in maximizing the fraction of true

1Johnson, B., Tateishi, R., Hoan, N., 2013. International Journal of Remote Sensing, 34 (20), 6969–6982.
2https://en.wikipedia.org/wiki/QuickBird

positives among predicted positives, so that when you reach one of the limited number of trees you can
treat, it is highly likely to be wilted. In this case the larger k may be desired.

It might seem that this naive approach treats each column equally, but, if one coordinate has a small
range (e.g., small standard deviation), differences in that coordinate will rarely matter in determining
the nearest neighbor. For example, for the below 2d dataset, the x variable will be more significant
than the y variable in determining separation.

0 1 2 3

3

2

1

0

For this reason the suggestion is often to scale=standardize (x ← x−x̄

σ
) the features. Do note that to

play fair the transformation of the testing set must use the same parameters (x̄, σ) that were used on
the training set, i.e., x̄ and σ are determined by the training set and applied to both training and testing
datasets. R’s scale command by default uses the data’s mean and standard deviation, but can be told
to use alternative center and scale. Note that it would make no sense to scale the class category.

Stdev=apply(D[,2:6], 2, sd)

Avg=colMeans(D[,2:6])

Dscaled=scale(D[,2:6])

D2scaled=scale(D2[,2:6],center=Avg,scale=Stdev)

Using these scaled variables is a disappointment!

predict=knn(Dscaled,D2scaled,D[,1],k=1)

table(predict,D2[,1])

(Q2) Report the accuracy for k = 1, 3, 5. This means that some columns have more information than
others; treating them equally reduced the accuracy. How do we find the most important features? In
terms of Big Data, the answer must be some automatic process, but we’re not going there. Remark:
You may think that the more features the better, but as discussed in the text (ISLR p. 108), more
features brings on the curse of high dimensionality. So our plan is to find better and fewer features by
hand. In the past we’ve discussed using pairs to look for relationships; corrplot is another option
I’ve used. For this dataset, neither helps much; pairs would be helpful if could actually separately
locate wilted and non-wilted datapoints. Part of the problem is 4265 non-wilted data points totally
cover the few wilted data points. . . we need to somehow ‘see through’ the cloud of non-wilted cases. The
details are going to get a little complicated, but hang in there. We aim to have the color and shape
of the datapoints be determined by the class: “n” will be small, dim, transparent “+” (pch=3); “w”
will be filled, red, opaque triangles (pch=24). In addition to 3 primary color dimensions, rgb has a
fourth dimension, called α, that controls transparency. Dull gray and almost entirely transparent is
rgb(.1,.1,.1,.05), whereas opaque red is rgb(1,0,0,1). We can put the desired color/shape values
in 2-element vectors, and control which element is selected with as.numeric(D$class) which is 1 for
n and 2 for w. (By default factors are ordered alphabetically.)

There is a lot of detail in these commands; you may want to copy & paste from the online wilt.pdf.

Color=c(rgb(.1,.1,.1,.05), rgb(1,0,0,1))

Shape=c(3,17)

pairs(D[,2:6],pch=Shape[as.numeric(D$class)],col=Color[as.numeric(D$class)])

pairs(log(D[,2:6]),pch=Shape[as.numeric(D$class)],col=Color[as.numeric(D$class)])

plot(D[,3],D[,4],pch=Shape[as.numeric(D$class)],col=Color[as.numeric(D$class)])

plot(D[,5],D[,4],pch=Shape[as.numeric(D$class)],col=Color[as.numeric(D$class)])

plot(D[,5],D[,3],pch=Shape[as.numeric(D$class)],col=Color[as.numeric(D$class)])

as.numeric(D$class) is a vector of 4339: 1 & 2; Shape[as.numeric(D$class)] is a vector of 4339
appropriately selected pch: 3 & 17.

Comment: there must be (nearly invisible) outliers far from the main clusters—the cause of all the
apparent white space in a normal plot. . . the nearly transparent ‘+’ are nearly invisible unless they
overlap. Using log-transformation helps to focus the display on the main clumps. To my eye the
cleanest separations come on Green, Red, NIR channels: on the Green-Red plot, the wilted points are
a cluster above the non-wilted; on the NIR-Red plot, the wilted points are a cluster above the non-
wilted; the NIR-Green plot doesn’t look as helpful. Focus first on the Green-Red plot. (Q3) Provide a
hardcopy of this plot. The majority of non-wilted lie near a line we can easily calculate by regression

plot(log(D[,3]),log(D[,4]),pch=Shape[as.numeric(D[,1])],col=Color[as.numeric(D[,1])])

lm(log(Red)~log(Green), data=D, subset=D$class=="n")

abline(a= -4.118, b= 1.622)

diff=log(D$Red)-(1.622*log(D$Green)-4.118)

plot(density((diff[D$class=="n"])))

lines(density((diff[D$class=="w"])),col="red")

(Q4) Report the R2 of the regression. diff is the vertical distance between the regression line and the
actual log(Red) value; generally the red triangles are above the line so diff will generally be positive
for the wilted class. From the density plots, see the very obvious separation of wilted and non-wilted.
However, a look at the counts in a histogram shows the problem: we’ve achieved a huge separation, but
even in the best bins, the tail of the non-wilted predominate.

hist((diff[D$class=="n"]),breaks=seq(-.5,.5,.1))

hist((diff[D$class=="w"]),breaks=seq(-.5,.5,.1),col="red",add=T)

OK we’ve reduced two poor features to one good feature. The sign of a good feature is a clean separation
between the classes. A ‘good feature’ will have the difference between the class means large compared to
the scatter. If desired we could calculate means and standard deviations and put together a measure for
a good feature, however the quantity we’re discussing (mean difference divided by standard deviation)
is what the t.test does. So let’s perform t-tests on all the feature columns separating by class. The
way to automate ‘doing the same thing’ on ‘different things’ is by defining a function. The ‘different
things’ will be the argument of the function (in this case the various columns of D); the function action
will be the ‘same thing’ (here finding the t statistic).

ttl=function(i){

return(t.test(log(1+D[D[,1]=="w",i]),log(1+D[D[,1]=="n",i]))$statistic)

}

sapply(2:6,ttl)

t t t t t

2.953412 -12.389849 2.828052 -7.335078 -4.553469

There is a bit of trickiness here (although the straightforward approach comes to exactly the same
conclusion). I’m using log transformations to dampen the effect of the outliers; since some features

include zero (and log(0) =NaN), I’ve added one to each feature. Otherwise what’s happening is fairly
vanilla: i will determine which column we’re using, and t.test(...)$statistic will return the de-
sired t statistic: difference in mean divided by standard deviation. sapply (simple apply) will then
successively load the integers between 2 and 6 into the function ttl and output the resulting sequence
of outcomes. Green (which we’ve already used in diff) separates the best followed by NIR and SD. Let’s
put those three things together in new, dimension-reduced data.frames d and d2 and see the results.

d=D[,c(5,6)]

d$diff=diff

d2=D2[,c(5,6)]

diff2=log(D2$Red)-(1.622*log(D2$Green)-4.118)

d2$diff=diff2

While equal scaling is not ideal (the diff separation is larger than NIR or SD separation), we’ll follow
the rules and scale

stdev=apply(d, 2, sd)

avg=colMeans(d)

dscaled=as.data.frame(scale(d))

d2scaled=as.data.frame(scale(d2,center=avg,scale=stdev))

predict=knn(dscaled,d2scaled,D[,1],k=1)

table(predict,D2[,1])

(Q5) Report the accuracy for k = 1, 3, 5. Notice that we’re doing better than Dscaled, but not as good
as the naive D for k = 1. But the accuracy and power hold up pretty well for larger k. The authors
of the paper report that over-sampling a sparse training set will improve results. Let’s see how we can
do that. Over-sampling basically means counting the (few) wilted trees in the training set multiple
times. . . each wilted tree in the set can stand in for 2 or 3 trees. Our knn output (for k > 1) reports the
majority vote of the k nearest neighbors. Now if the k = 5 nearest neighbors includes just two wilted
trees, the raw vote is (n,w)=(3,2)—which ordinarily would be P = .6 win for non-wilted. However if a
wilted tree counts double, the vote becomes (3,4) and wilted wins. If a wilted tree gets five votes (and
k = 5), then a raw vote (n,w)=(4,1) (which ordinarily would be P = .8 win for non-wilted) becomes
(4,5) and wilted wins. So we can effectively ‘over-sample’ by just modifying what raw vote fraction (P)
counts as a wilt: we require a super-majority (P > .5) for a non-wilt win.

predict=knn(dscaled,d2scaled,D[,1],prob=T,k=5)

predict2= (predict=="w") | (predict=="n" & attributes(predict)$prob <=.6)

table(predict2,D2[,1])

Notice the new prob=T option to output those P values. (Q6) Report the accuracy for the 2× weighed
wilted trees (P ≤ 0.6) and 5× weighed wilted trees (P ≤ 0.8). You should find that we are now
beating the k = 5 naive solution. Note also that (unfortunately) we’ve also increased the false positives.
(Clearly the effect of this action is to move predicted non-wilted cases into predicted wilted—if they
were wilted that improves the accuracy, if they were not wilted it increases the false positives.) Finally
the accuracy we’ve achieved by these simple method does not match the author’s accuracy using more
complex methods, i.e., while we’re about half-way there, there is much to learn beyond this class.

