
Physics 366: Relativity FINAL EXAM Due: 2005 October 24

Complete 5 of the following 7 problems.

The S′ frame moves with a velocity v down the positive x axis of the S frame. Using the
usual parameters: β = v/c and γ = (1−β2)−

1

2 , the relationship between coordinates in the
two frames is given by:
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and
y′ = y
z′ = z

or: X
′ = O · X where: X = (r, ict)

and O is the orthogonal matrix:
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

1. (a) A really, really, really massive racket (mass: M → ∞) travelling at speed v hits
a teeny little ball (mass: m) at rest. What is the subsequent velocity of the ball?
(Hint: This is a Lorentz transformation problem. Analyze the problem in the
easy frame —where the racket is at rest— and transform back to the lab frame.
Note that Newton would answer this 2v.)

(b) Consider basically the same problem but with light bouncing off a mirrorred
racket. Of course, the light could not be initially at rest, rather it has a propa-
gation 4-vector: k=(k, ik). (As required, this is a null 4-vector, with frequency
given by ω/c = k or ν/c = 1/λ.) After reflection the light has a propagation
4-vector: q=(q, iq) (with ω′/c = q). Once again you will want to analyze this
problem in the rest frame of the mirror, where the usual rules of mirror reflection
(θi = θr and νi = νr) apply. Show:

cos φ =
cos θ(1 + β2) + 2β

2β cos θ + 1 + β2

sinφ =
sin θ(1 − β2)

2β cos θ + 1 + β2

Using the trigonometric identity:
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should allow you to show more a usefull result:
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2. (a) As a neutral pion (π0) (rest mass m, velocity ~v = v î) flys though the lab, it
decays into two (generally different frequency) photons (π0 → γγ′). Just using
4-vector algebra, show that the energy of a photon (viewed in the lab frame
moving at an angle θ to the direction of motion of the π0) is given by:

E =
mc2

2γ(1 − β cos θ)

Explain why in the rest frame of the π0 the two photons must have the same
energy: 1

2mc2.

(b) Show that a whole parade of photons (perhaps with different frequencies) but all
moving in the same direction, produce a total momentum 4-vector that is null.
Use this result to show that an interstellar spacecraft ‘burning’ mass to produce
a straight-line photon exhaust will have a mass ratio:

Mfinal

Minitial
=

√

1 − β

1 + β

where β describes the final speed achieved by the spacecraft.

3. Consider the coordinate system dxa = (dχ, dθ, dφ) with invariant distance:

ds2 = dχ2 + sin2 χ
(

dθ2 + sin2 θ dφ2
)

Note that for small χ this is like spherical coordinates where:

ds2 = dr2 + r2
(

dθ2 + sin2 θ dφ2
)

Find the non-zero Christoffel symbols.

I claim that with this metric:

Rabcd = K (gacgbd − gadgbc) = Kga[cgd]b

for some scaler constant K (note that all indices are covariant in this expression).
Calculate one non-zero Rabcd, and then use it in the above expression to determine
K. Once you’ve found K, calculate the Ricci tensor and the scaler curvature.

4. Recall our work on uniform acceleration. Equation 8.56 claims that

γ∗η2 = constant for free fall

Prove this result. Hint: use a combination of Mathematica and some hand calculations—
this problem is much like homework showing that the coordinate speed of light is η.
(Please turn in hardcopy showing your computer calculations.)



5. Consider the (2d) parabolic coordinate system (u, v):

x = (u2 − v2)/2

y = uv

u =
y
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√
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where r =
√

x2 + y2. Find the vectors: eu and ev. By taking derivatives of these
vectors find the Christoffel symbols: Γu

uu,Γu
uv,Γ

u
vv,Γ

v
uu,Γv

uv,Γ
v
vv . Use dot products of

eu and ev to find the metric tensor. Take derivatives of the metric tensor to confirm
one of the Christoffel symbols determined above.

6. The tensor T µν in the usual xµ = (x, y, z, ct) (flat) coordinate system has the following
values:

T µν =









a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d









Find T µ
ν and use it to produce an invariant. Consider a change of coordinates from

rectangular to spherical xµ′

= (r, θ, φ, ct) where as usual:

x = r sin θ cos φ

y = r sin θ sinφ

z = r cos θ

r =
√

x2 + y2 + z2

θ = cos−1(z/r)

φ = tan−1(y/x)

Find T µ′ν′

, i.e., T µν in the spherical coordinate system.



7. Consider Kirkman’s double-door, catch-and-release, rod-in-garage problem. A 10 m
long garage has both front and back doors. A rod (rest length 20 m) approaches the
(open) front door of the garage at a speed (what speed?) giving γ = 2. Because the
rod appears Lorentz contracted to observers in the garage rest frame (S), it should
be just possible to —for an instant— close both doors of the garage while the rod
is inside the garage. However, to an observer in the rest frame (S′) of the rod, the
garage is contracted and there is no hope of fitting the rod inside the garage. Set up
the coordinates systems S and S′ so that x = 0, t = 0, x′ = 0, t′ = 0 corresponds to
the rear of the rod at front of the garage. Thus at t = 0 we can close and quickly open
the garage doors and be assured that the rod is inside. Find S and S′ coordinates for
the event that is the closing (and opening) of the back garage door. Describe what is
seen in the rest frame of the rod (S′). Include in your description: the length of the
garage, and show that the front of the garage has time to travel from the event of the
closing of the back garage door on the front end of the rod to the event of closing of
the front garage door on the rear end of the rod. Perhaps starting with the online
blank Minkowski Diagram accurately draw the S′ coordinates axies t′ = 0 and x′ = 0.
On this diagram draw and label the worldline of (A) the garage front, (B) the garage
back, (C) the rod rear, and (D) the rod front. Label with (E) the event that is the
closing of the front door and label with (F) the event that is the closing of the back
garage door.
If at t′ = 0, the rod is dipped, so as to leave marks in the ground at the front and
rear of the rod, find the garage-rest-frame (S) location of the marks. Label the events
of making these marks (G) and (H) on your Minkowski Diagram. For the rod-dip,
describe the sequence of events as seen in S.


