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We begin with the line element
ds? = gapdr®da® (1)

where gog is the metric with o, 3 = 0,1,2,3. Also, we are using the Einstein
summation convention in which we sum over repeated indices which occur as a
subscript and superscript pair. In order to find the geodesic equation, we use
the variational principle which states that freely falling test particles follow a
path between two fixed points in spacetime which extremizes the proper time,
T.

The proper time is defined by dr? = —ds?. (We are assuming that ¢ = 1.)
So, formally, we have
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In order to write this as an integral that we can compute, we consider a
parametrized worldline, ¢ = x%(o), where the parameter ¢ = 0 at point A
and o = 1 at point B. Then, we write
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Here we have introduced the Lagrangian, L [%, a:a] .
We note also that
r="
do
Therefore, for functions f = f(7(0)), we have
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We will use this later to change derivatives with respect to our arbitrary pa-
rameter o to derivatives with respect to the proper time, 7.



Using variational methods as seen in classical dynamics, we obtain the Euler-
Lagrange equations in the form

d oL oL
o (a(dxv/do—)> o =0 (3)

We carefully compute these derivatives for the general metric. First we find
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The o derivatives have been converted to 7 derivatives.
Now we compute
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In the last step we used the symmetry of the metric and the fact that o and 8
are dummy indices.
We differentiate the last result to obtain
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Again, we have used the symmetry of the metric and the reindexing of repeated
indices. Also, we have eliminated appearances of L by changing to derivatives
with respect to the proper time.

So far we have found that
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Rearranging the terms on the right hand side and changing the dummy index
a to d, we have
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We have found the geodesic equation,
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where the Christoffel symbols satisfy
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This is a linear system of equations for the Christoffel symbols. If the metric
is diagonal in the coordinate system, then the computation is relatively simple
as there is only one term on the left side of Equation (10). In general, one needs
to use the matric inverse of gos. Also, you should note that the Christoffel
symbol is symmetric in the lower indices,
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We can solve for the Christoffel symbols by introducing the inverse of the
metric, g*7, satisfying
9" gory = 04 (11)
Here, 6% is the Kronecker delta, which vanishes for i # o and is one otherwise.
Then,
gwgmyr?ﬁ = 0,155 = Fgﬁ' (12)

Therefore,
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