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The science fiction film, Interstellar, tells the story of a team of astronauts searching a distant galaxy for
habitable planets to colonize. Interstellar’s story draws heavily from contemporary science. The film
makes reference to a range of topics, from established concepts such as fast-spinning black holes,
accretion disks, tidal effects, and time dilation, to far more speculative ideas such as wormholes, time
travel, additional space dimensions, and the theory of everything. The aim of this article is to decipher
some of the scientific notions which support the framework of the movie.

INTRODUCTION

The science-fiction movie Interstellar (2014) tells the adventures of a group of
explorers who use a wormhole to cross intergalactic distances and find potentially
habitable exoplanets to colonize. Interstellar is a fiction, obeying its own rules of artistic
license : the film director Christopher Nolan and the screenwriter, his brother Jonah, did
not intended to put on the screens a documentary on astrophysics - they rather wanted
to produce a blockbuster, and they succeeded pretty well on this point. However, for the
scientific part, they have collaborated with the physicist Kip Thorne, a world-known
specialist in general relativity and black hole theory. With such an advisor, the
promotion of the movie insisted a lot on the scientific realism of the story, in particular
on black hole images calculated by Kip Thorne and the team of visual effects company
Double Negative. The movie also refers to many aspects of contemporary science, going
from well-studied issues such as warped space, fast-spinning black holes, accretion
disks, tidal effects or time dilation, to much more speculative ideas which stem beyond
the frontiers of our present knowledge, such as wormholes, time travel to the past,
extra-space dimensions or the «ultimate equation» of an expected « Theory of
Everything ».

It is the reason why, beyond the subjective appreciations that everyone may have
about the fiction story itself, many people - physicists and science journalists - have
taken the internet to write articles lauding or criticizing the science shown in the movie.
Kip Thorne has written a popular book, The Science of Interstellar?, to explain how he
tried to respect scientific accuracy, despite the sometimes exotic demands of
Christopher and Jonah Nolan, ensuring in particular that the depictions of black holes
and relativistic effects were as accurate as possible.

The aim of this article is not to write a (inevitably subjective) review of Interstellar as
a fiction story, but to decipher some of the scientific notions, which support the
framework of the movie.

AN ARTIFICIAL WORMHOLE IN THE SOLAR SYTEM ?

In the first part of the film, we are told that a « gravitational anomaly », called a
wormbhole, has been discovered out near Saturn several decades ago, that a dozen
habitable planets have been detected on the « other side » and a dozen astronauts sent
to explore them. In particular, one system has three potentially habitable planets, and it



is now the mission of the hero, Cooper, to pilot a spaceship through the wormhole and
find which planet is more suitable for providing humanity a new home off the dying
Earth.

Wormholes arise as mathematical, idealized solutions of the equations of general
relativity that describe the shape of space-time generated by a black hole. Their
description can be made pictorial by a technique called embedding. As the name
suggests, the game is to visualize the shape of a given space by embedding it in a space
with an additional dimension. The mapping is useless for the full 4-dimensional space-
time of general relativity, as it would have to be embedded in a 5-dimensional space,
which is impossible to visualize. But in the case of a non-rotating black hole, the space-
time geometry, described by the Schwarzschild metric, remains fixed at all times;
furthermore, due to spherical symmetry, no information is lost by looking only at
equatorial slices passing through the center of the sphere. It then becomes easy to
visualize all the details of the curvature of the Schwarzschild geometry as a 2-
dimensional surface embedded in the usual 3-dimensional Euclidean space. The result
comes to a surprise: the embedding surface consists of a paraboloid-shaped throat
linking two distinct sheets of space-time. Ludwig Flamm discovered the paraboloid
shape as soon as 1916, and Albert Einstein and Nathan Rosen? first studied the
Schwarzschild throat in 1935. It has a minimum radius equal to the Schwarzschild
radius r =2GM/c?, where M is the mass of the black hole, G the gravitational constant and
c the speed of light : it corresponds to the event horizon - the immaterial frontier of the
black hole - reduced to a circle. For a typical stellar black hole with M = 10 solar masses,
we get r = 30 km. It is the size assumed in Interstellar.

The Schwarzschild throat (also called the Einstein-Rosen bridge) joins the upper and
lower sheets which are perfectly symmetrical, and which we are at liberty to interpret
as « parallel universes ». In other words, the throat appears to the upper universe like a
black hole consuming matter, light and energy, but for the lower universe it appears as a
« white fountain » expelling matter, light and energy.

Now, general relativity determines only the local curvature of the space-time, and not
its global shape. In particular, it allows the two distinct sheets to be different regions of
the same universe. We have now a black hole and a white fountain in the same space-
time at an arbitrary distance from each other, but linked by a stretched-out throat,
baptized wormhole by John Wheeler in 1957 (Wheeler also coined the term « black
hole », but only ten years later). We can figure out a wormhole like a tunnel with two
ends, each in separate points in space-time, and that tunnel would work as a shortcut to
travel through space and time. For example, Charles Misner3 found a solution of the
wormhole equations allowing to travel from the solar system to the nearest star,
Proxima Centauri, located at 4.2 light-years, in a time shorter than 4.2 years, however
without exceeding the speed of light.

Now, coming back to the Interstellar story, two major problems arise. First, there is
no wormhole without a black hole. Second, is a wormhole traversable, and can it be
really used by a spaceship to travel in space-time ?

For the first one, there are clearly several scientific caveats in the scenario. The most
common black holes are formed by the gravitational collapse of massive stars, and
consequently have a few solar masses. According to the Schwarzschild formula given
above, their radius, and consequently that of their putative wormhole, is of order of a
few kilometers only, and the tidal forces they generate (see below) are so huge that any
spaceship or astronaut would be torn apart at a distance of several thousands
kilometers, i.e. well before being able to reach the event horizon and penetrate it.



Besides, since about one star over 10,000 is massive enough to generate a black hole, the
latter are pretty rare : it is estimated that the average density of stellar mass black holes
in our region of the Milky Way is of the order of 0.00001 per cubic light year. It would
thus be extraordinarily improbable that a stellar black hole is so close to us. And even if
it were so, at the distance of Saturn, its huge gravitational field would completely
destroy the stability of our solar system ! It is the reason why the Nolan’s brothers have
taken a pure science-fiction option: the wormhole near Saturn has been artificially
created by a very advanced civilization, and placed there to help humanity escape the
solar system (at the end of the movie, we understand that these aliens were in fact
advanced humans from the future; they created the black hole and its associated
wormbhole in the first place, manipulating time and events so that things had to unfold
the way they did).

The second problem is the traversability of wormholes. The calculations for a non-
rotating black hole, described by the Schwarzschild geometry, show that the wormhole
is « strangled in the middle » by the infinite gravitational field of a singularity located at
the center r=0, so that nothing can pass through it. However, natural black holes, like
stars, must be rotating, and it that case the geometry is much more subtle and complex
than the Schwarzschild one. It is described by the Kerr metric (as discovered in 1962 by
the new Zealand physicist Roy Kerr). And in that case, the mapping technique described
above for the Schwarzschild geometry gives a much more complicated and interesting
space-time structure, investigated in the 1960’s by Brandon Carter (my former PhD
advisor) and Roger Penrose*. First of all, the central singularity is no more reduced to a
central point at r=0, but has the shape of a ring lying in the equatorial plane of the
rotating black hole. As a consequence, the ring no more defines an edge of the space-
time geometry, because a traveller, apart from the dangers of tidal forces, could come
safely within a hair’s breadth of the annular singularity provided he does not touch it, or
he can even pass through it. The Penrose-Carter diagrams suggest fascinating
possibilities for exploration (see e.g. Luminet®). Allowable trajectories show that it is
theoretically possible to penetrate the interior of a rotating black hole - preferably a
very large one, so that the spaceship is not destroyed by tidal forces -, fly above the
plane of the singular ring, and escape the black hole by emerging into an exterior
universe (which could be topologically the same as the starting one). Along other
trajectories, it could also go to the « other side » of the singularity by passing through
the ring, and emerge into a completely unknown universe. In such cases, Kerr black
holes would have open wormbholes, offering fantastic possibilities for space-time travel !

Alas, the Penrose-Carter diagrams are idealized representations of the space-time
structure. In the real universe, astrophysical black holes, rotating or not, are formed by
physical processes such as gravitational collapse, and in that case, all the general
relativistic calculations say that wormholes are unstable : as soon as they are formed,
they would also gravitationally collapse and would be not traversable. But this is not
quite the end of the story : come into play general relativistic calculations involving also
quantum processes. A possible escape has been proposed in 1988 by Thorne and his
students®: wormholes that are laced with matter or energy exerting an enormous
« negative pressure » (i. e. a repulsive tension) could be stable and traversable. Such
forms of matter or energy are called « exotic ». It happens that, in the framework of
quantum mechanics, some energy states of the quantum vacuum obtained by the so-
called Casimir effect have the required properties to produce exotic energy. Of course,
all of this is highly speculative, but not theoretically impossible - even if the amount of
negative energy required maintaining the wormhole open would be greater than the



total energy emitted by the Sun during one full year...

Later, other types of traversable wormholes were discovered as allowable solutions
to the equations of general relativity’. Thus, for a Hollywood sci-fi movie, the
screenwriters felt free to imagine that a very advanced civilization could construct a
negative wormhole - perhaps by growing a microscopic negative one, as permitted by
quantum mechanics -, and use it effectively as a space-time shortcut.

Even allowing this fantastic idea, there is nothing telling us that a spaceship (and the
humans inside), made of normal matter, could cross the negative energy region safely.
Nevertheless, the theoretical possibility enabled the popular American astronomer-
writer Carl Sagan to construct his novel Contact (1985) using the idea of communication
with extra-terrestrial civilizations by means of wormholes, and already at the time it
was Kip Torne who advised Sagan on the possibilities of wormholes. For Interstellar,
Thorne went beyond and, just to help the team of visual effects, tried to calculate what
would give a journey through an artificially created wormhole. Except for the spherical
shape of the wormhole, which can be appreciated by the spectators when the spaceship
approaches, most of the scientific calculations were not retained by the filmmakers,
because of the strange effects generated, arguably non understandable for a general
audience. For the rest, we can be sure that, with our present-day knowledge, a
traversable wormhole is not only very improbable, but if it existed, its crossing would
not at all look like it is shown in the movie !

To conclude this section, it is to be noticed that scientific visualizations of traversable
wormholes had already been calculated in 2006 by Alain Riazuelo at the Institut
d’Astrophysique de Paris, and the result, available on DVD8, is much more spectacular
than the artistic rendering shown in Interstellar.

THE FAST-SPINNING BLACK HOLE « GARGANTUA »

Once on the other side of the wormhole, the spaceship and its crew emerge into a
three-planets system orbiting around a supermassive black hole called Gargantua.
Supermassive black holes, with masses going from one million to several billion solar
masses, are suspected to lie in the centers of most of the galaxies. Our Milky Way
probably harbors such an object, Sagittarius A*, whose mass is (indirectly) measured as
4 million solar masses (for a review, see Melia®). According to Thorne, Gargantua would
be rather similar to the still more massive black hole suspected to be located at the
center of the Andromeda galaxy, adding up 100 million solar masses!?. Its size being
roughly proportional to its mass, the radius of such a giant would encompass the Earth’s
orbit around the Sun.

Such enormous black holes are not a science-fiction exaggeration, since we have the
observational clues of the existence of « Behemoth » black holes in faraway galaxies. The
biggest one yet detected lies in the galaxy NGC 1277, located at 250 million light-years ;
its mass could be as large as 17 billion solar masses, and its size would encompass the
orbit of Neptunell.

Another - and very important - characteristic of Gargantua is that it is a fast-spinning
black hole. All the objects in the universe - except the universe itself - rotate. Thus a
natural black hole must do so, and be described by the Kerr geometry. The latter now
depends on two parameters : the black hole mass M and its angular momentum J]. An
important difference with usual stars, which are in differential rotation, is that the Kerr
black holes are rotating with perfect rigidity : all the points on their surface (the event
horizon) move with the same angular velocity. There is however a critical angular



momentum Jmax above which the event horizon would «break up»: this limit
corresponds to the horizon having a spin velocity equal to the speed of light. For such a
black hole, called « extremal », the gravitational field at the event horizon would cancel,
because the inward pull of gravity would be compensated by the huge repulsive
centrifugal forces.

It is quite possible that most of the black holes formed in the real universe have an
angular momentum rather close to this critical limit. For instance, a typical stellar black
hole of 3 solar masses, believed to be the engine of many binary X-ray sources, must
rotate at almost 5000 revolutions per second. For reasons that will be explained later,
the black hole Gargantua shown in Interstellar was assumed to have an angular
momentum as close as 1010 to the critical value Jmax. If theoretically possible, this
configuration is physically quite unrealistic, because the more a black hole rotates fast,
the more the material orbiting in the same direction is hard to capture, due to the
centrifugal forces, while the matter orbiting in the opposite sense is easily sucked into
the hole, where it slows the spin. As a consequence, a too-fast spinning black hole would
have the tendency to slow down to an equilibrium velocity smaller than that of
Gargantua (general relativistic calculations say that black holes spin no faster than about
0.998 Jmax)-

However, the advantage of a very fast-spinning black hole is that it permits to have
planets orbiting extremely close to the event horizon without being swallowed. And this
is a key point of the movie, for it also allows for a huge time dilation, see below. For a
Schwarzschild black hole (i.e. with angular momentum J]=0), the innermost stable
circular orbit, inside which any object would spiral and crash into the black hole, is
located at 3 times the black hole radius. For a 100 million solar masses black hole, this
gives a minimum distance of 900 million kilometers (a little bit more than Jupiter’s
distance to the Sun). But for a Kerr black hole spinning very close to the critical limit Jmax,
the innermost stable circular orbit can be as close as the event horizon itself: 100
million kilometers only. It is the reason why, in Interstellar, the closest planet (called
Miller) can orbit safely very close to the event horizon without being swallowed.

Another noticeable point is that a Kerr black hole is not a spinning top revolving in a
fixed exterior space: as it rotates, it drags the entire fabric of space-time along with it.
As a consequence, Miller’s planet must orbit at a velocity close to the speed of light.

ILLUMINATED PLANETS ?

All right for the gravitational safety of the three-planets system around Gargantua.
But where do these planets get heat and light? In principle a star is needed for that, but
there is no star around. Heat cannot come from the black hole itself in the form of the
Hawking radiation or the recently advanced « firewall » phenomenon!? : these effects
being purely quantum in nature, they could be noticeable for microscopic black holes,
but are completely negligible for astrophysical ones. Can light and heat come from the
gaseous ring that orbits around Gargantua, called an accretion disk? Such an
explanation is not very consistent with the rest of the story, because later in the movie
Cooper inevitably has to go inside the black hole, and he does not get fried. The theory of
accretion disks around black holes was actually developed decades ago (for a review,
see Abramowicz!3) and are in agreement with recent astrophysical measurements using
gravitational lensing!4. Because of the incredible forces involved, accretion disks are
extremely hot, like millions of degrees hot. They are so brilliant that they can be seen
millions of light-years away, and blast out enough radiation to completely destroy any



normal material. Thus the astronauts would have been fried as soon as they emerged
from the wormhole. Happily for the continuation of the story, it was not the case. So,
how the planets can be habitable despite no nearby source of warmth ?

In his popular book as well as in various interviews, Thorne claimed that the light
could come from a very «anemic» accretion disk, that has cooled down to the
temperature of the Sun basically (5500 °C). Here « anemic » means that the disk has not
been fed by new gas (coming for instance from a tidally disrupted star, see below) in the
last million years, and that the accretion rate onto the black hole, a critical parameter on
which depends the disk luminosity, is extremely low. In that sense, such a quiescent
accretion disk could be relatively safe for humans. But I doubt that it could provide
enough light and heat to the planet, like the Sun to us, just because an anemic accretion
disk would also be optically thin (ie. transparent), while the Sun’s photosphere is
optically thick (i.e. opaque).

VISUALISATION OF THE ACCRETION DISK

Since a black hole causes extreme deformations of spacetime, it also creates the
strongest possible deflections of light rays passing in its vicinity, and gives rise to
spectacular optical illusions, called gravitational lensing. Interstellar is the first
Hollywood movie to attempt depicting a black hole as it would actually be seen by an
observer nearby. For this, the team at Double Negative Visual Effects, in collaboration
with Kip Thorne, developed a numerical code to solve the equations of light-ray
propagation in the curved spacetime of a Kerr black hole. It allows to describe
gravitational lensing of distant stars as viewed by a camera near the event horizon, as
well as the images of a gazeous acccretion disk orbiting around the black hole. For the
gravitational lensing of background stars, the best simulations ever done are due to
Alain Riazuelo?5, at the Institut d’Astrophysique in Paris, who calculated the silhouette of
black holes that spin very fast, like Gargantua, in front of a celestial background
comprising several thousands of stars.

But perhaps the most striking image of the film Interstellar is the one showing a
glowing accretion disk which spreads above, below and in front of Gargantua. Accretion
disks have been detected in some double-star systems that emit X-ray radiation (with
black holes of a few solar masses) and in the centers of numerous galaxies (with black
holes whose mass adds up to between one million and several billion solar masses). Due
to the lack of spatial resolution (black holes are very far away), no detailed image has
yet been taken of an accretion disk; but the hope of imaging accretion disks around
black holes telescopically, using very long baseline interferometry, is nearing reality
today via the Event Horizon Telescopel®. In the meanwhile, we can use the computer to
reconstruct how a black hole surrounded by a disk of gas would look. The images must
experience extraordinary optical deformations, due to the deflection of light rays
produced by the strong curvature of the space-time in the vicinity of the black hole.
General relativity allows the calculation of such an effect.

In 1979 I was the first to simulate the black and white appearance of a thin accretion
disk gravitationally lensed by a non-spinning black hole, as seen from far away, but close
enough to resolve the image?!’. | took a Schwarzschild black hole and a thin disk of gas
viewed from the side, either by a distant observer or a photographic plate. In an
ordinary situation, meaning in Euclidean space, the curvature is weak. This is the case
for the solar system when one observes the planet Saturn surrounded by its magnificent
rings, with a viewpoint situated slightly above the plane. Of course, some part of the



rings is hidden behind the planet, but one can mentally reconstruct their elliptic outlines
quite easily. Around a black hole, everything behaves differently, because of the optical
deformations due to the space-time curvature. Strikingly, we can see the top of the disk
in its totality, whatever the angle from which we view it may be. The back part of the
disk is not hidden by the black hole, since the images that come from it are to some
extent enhanced by the curvature, and reach the distant observer. Much more
astonishing, one also sees a part of the bottom of the gaseous disk. In fact, the light rays
which normally propagate downwards, in a direction opposite to that of the observer,
climb back to the top and furnish a « secondary image », a highly deformed picture of the
bottom of the disk (in theory, there is a tertiary image which gives an extremely
distorted view of the top after the light rays have completed three half-turns, then an
image of order 4 which gives a view of the bottom which is even more squashed, and so
on to infinity).

Thus, when I saw for the first time the image of the accretion disk in Interstellar, I was
not surprised to see the disk spreading above, below and in front of Gargantua’s
silhouette. The visual result was awesome, and the team at Double Negative could be
proud of that. But when I read in press releases that this image was the first and the
more realistic image of a black hole accretion disk ever made, I was puzzled, because
basic visual effects were obviously missing.

In my 1979 simulation, I had also taken into account the physical properties of the
gaseous disk : rotation, temperature and emissivity. In a thin accretion disk, the
intensity of radiation emitted from a given point on the disk depends on its distance
from the black hole. Therefore the brightness of the disk cannot be uniform, as
suggested in Interstellar. The maximum brilliance comes from the inner regions close to
the horizon, because it is there that the gas is hottest. In addition, the apparent
luminosity of the disk is still very different from its intrinsic luminosity : the radiation
picked up at a great distance is frequency- and intensity-shifted with respect to the
emitted one. There are two sorts of shift effects. There is the Einstein effect, in which the
gravitational field lowers the frequency and decreases the intensity. And there is the
better-known Doppler effect, where the displacement of the source with respect to the
observer causes amplification as the source approaches and attenuation as the source
retreats. In this case, the disk rotating around the black hole causes the Doppler effect.
The regions of the disk closest to the black hole rotate at a velocity approaching that of
light, so that the Doppler shift is considerable and drastically modifies the image as seen
by a faraway observer. The sense of rotation of the disk is such that matter recedes from
the observer on, say the right-hand side of the photograph, and approaches on the left-
hand side. As the matter recedes, the Doppler deceleration is added to the gravitational
deceleration, implying a very strong attenuation on the right-hand side. In contrast, on
the left-hand side the two effects tend to cancel each other out, so the image more or less
retains its intrinsic intensity. In any case, a realistic image must show a strong
asymmetry of the disk’s brightness, so that one side is far brighter and the other is far
dimmer.

To describe the complete image I obtained (now easily available on the internet!8), no
caption could fit better than these verses by the French poet Gérard de Nerval, written
as soon as in 1854:

In seeking the eye of God, | saw nought but an orbit
Vast, black, and bottomless, from which the night which there lives
Shines on the world and continually thickens



A strange rainbow surrounds this somber well,
Threshold of the ancient chaos whose offspring is shadow,
A spiral engulfing Worlds and Days *®

All the above-mentioned effects change also the colors, e.g. from blue on one side to
red on the other, and so on. This could not be seen on my black and white (bolometric)
image, but my pioneering work motivated visualizations of accretion disks around black
holes with ever increasing sophistication. Especially, Fukue and YokoyamaZ2 added
colours to the disk; Viergutz?! made the black hole spin and produced coloured images
including the disk’s secondary image wrapping under the black hole; Marck?? laid the
foundations for a nice movie available on the web?3, with the camera moving around
close to the disk, and included higher order images. Sophisticated ray-tracing codes and
accretion flow models have been developed recently, including full 3D-simulations of
accretion flows and images of these, see for instance Chan et al.?4 for simulating the
aspect of the Galactic black hole Sagittarius A*.

Of course Kip Thorne did not ignore these effects. But, as he wrote me in a
spontaneous mail, the film director estimated that a general audience would have been
totally baffled by what they are looking at; so a conscious decision was made to leave
out the Einstein and Doppler shifts as well as the physical properties of the disk, and
have an accretion disk with the right shape but not the right lopsidedness. As an
additional simplification, they have also chosen to apply their calculations to a black
hole smaller than Gargantua, and with a much more moderate spin - otherwise the
visual effects would have become completely weird and incomprehensible, even for
educated physicists | However, in order to fully exploit their ray-tracing code, in parallel
to the movie and the popular nook Thorne and the team at Double Negative have
submitted to a peer-review a technical paper2s including all the corrections.

TIDAL STRESS

When an object - a planet, a star - moves around a black hole, the forces of gravity act
more strongly on the side of the body nearer to the black hole than on the other side.
The difference between the two forces is called the tidal force. If the celestial body
moves along an approximately circular orbit at a reasonable distance, the tidal forces
remain small and the body is able to adjust its internal configuration to the external
forces, adopting an elongated shape oriented towards the hole. However, if the body is
moving along an eccentric orbit, as the distance r from the black hole decreases the tidal
forces increase rapidly (like r-3). Eventually there comes a point where these forces are
as large as the forces binding the body together. The planet or the star have no longer
time to adjust their internal configuration, begin to deform catastrophically and are
inevitably disrupted. This happens rather frequently in the universe. In the 1980’s, I
worked a lot on the process of disruption of full stars by massive black holes?¢. For
extreme cases, when the star grazes the event horizon along a parabolic orbit without
being swallowed, I predicted the occurrence of « flambéed stellar pancakes », releasing a
lot of radiative energy?’. Our telescopes have since captured such scenes. However,
these events occur only when the body gets within some critical radius from the black
hole, called the Roche limit - after the French mathematician who studied the problem
of tidal forces in 1847 in the context of planets and their satellites.

On the Internet, some bloggers have claimed that the Miller’s planet should be



completely destroyed by tidal forces, since it is so close to the black hole’s surface. This
is not necessarily so, and Interstellar is marginally correct on this point. In effect, the
Roche limit depends on the mass of the black hole and on the average density of the
external body according to the law Rr ~ (M/p+)1/3, where M is the mass of the black hole
and p+ the density of the body. Applying this formula to the case of Gargantua (M = 108
solar masses) and a water planet (p ~1 g/cm3) we get RR ~ 1013 cm. Now the
gravitational radius of the Gargantua black hole, GM/c?, is also of order 1013 cm.
Therefore Miller’s planet must suffer large tidal forces, but not enough to be torn apart
(for black holes still more massive than 108 solar masses, such as those suspected to lie
in the centers of quasars, the Roche limit becomes significantly smaller than the
gravitational radius, and in that case, planets or stars can be broken up by the tidal
forces only once they are inside the black hole).

Now, in the movie, once the explorers have « landed » on Miller’s planet - a water one
-, they find it suffering periodic and enormous tidal waves sweeping around. These are
unexplained, but we can assume they are caused by the tides from the black hole. We
would have to solve some equations to find out whether such kilometer high waves are
physically realistic. These equations both involve laws of gravity (if their origin is indeed
tidal) and hydrodynamics, more precisely the Navier-Stokes theory. From the film, we
notice that the wavelength of the water waves is much greater than the depth of the
water itself; such a situation is ripe for the « shallow-water » approximation, which are
obtained by applying the Navier-Stokes equations to such a problem. Fluid mechanics
textbooks discuss these equations at length; they are coupled, nonlinear partial
differential equations, depending on various parameters such as the surface gravity on
the planet g, its rotation rate, the viscous drag forces, and so on.

For the situation in Interstellar, we are told that the acceleration due to gravity on the
planet is 130% that of Earth’s, which means that g = 9.81 x 1.30 = 12.75 m/s?. The other
parameters will be influenced by internal forces in planet’s structure, combined with
complex external effects due to the gravitational field of the rotating black hole. There
are too many uncertainties on the knowledge of all the parameters to be able to solve
numerically the equations.

Nevertheless, I suspect some inconsistency in the film. A tidal wave is actually a bulge
of water fixed in space, always oriented in the same configuration, so the astronauts on
the planet rotate in and out of that bulge. They feel it as a wave coming towards them
and away from them, experiencing from a high tide part of the water to a low tide part of
the water. In Interstellar, the waves come every hour or so, which means that the planet
rotates once ever two of those (because there are two high tides for every rotation). The
problem is that with such huge tides, the planet should become quickly tidally locked
with the black hole (i.e., like the Moon to the Earth, always presenting the same face to
the black hole). We have formulas telling how fast tidal locking occurs in binary systems.
Using a 108 solar masses black hole and a planet with a surface gravity about 13 m/s?,
we find that the time scale for tidal locking is only 1 millisecond ! Once the planet is
tidally locked to the black hole, it spins only once per revolution, and on top of it water
stays in place, always pulled towards the black hole.

A HUGE TIME DILATION
The elasticity of time is a major consequence of relativity theory, according to which

time runs differently for two observers with a relative acceleration - or, from the
Equivalence Principle, moving in gravitational fields of different intensities. This well-



known phenomenon, checked experimentally to high accuracy, is called « time dilation ».
Thus, close to the event horizon of a black hole, where the gravitational field is huge,
time dilation is also huge, because the clocks will be strongly slowed down compared to
farther clocks. This is one of the most stunning elements of the scenario of Interstellar :
on the water planet so close to Gargantua, it is claimed that 1 hour in the planet’s
reference frame corresponds to 7 years in an observer’s reference frame far from the
black hole (for instance on Earth). This corresponds to a time dilation factor of 60,000.
Although the time dilation tends to infinity when a clock tends to the event horizon (this
is precisely why no signal can leave it to reach any external observer), at first sight a
time dilation as large as 60,000 seems impossible for a planet orbiting the black hole on
a stable orbit. As explained by Thorne in his popular book, such a large time dilation was
a « non-negotiable » request of the film director, for the needs of the story. Intuitively,
even an expert in general relativity would estimate impossible to reconcile an enormous
time differential with a planet skimming up the event horizon and safely enduring the
correspondingly enormous gravitational forces. However Thorne did a few hours of
calculations and came to the conclusion that in fact it was marginally possible (although
very unlikely). The key point is the black hole’s spin. A rotating black hole, described by
the Kerr metric, behaves rather differently from a static one, described by the
Schwarzschild metric. The time dilation equation derived from the Kerr metric takes the
form:
1 - (dt/dt)? = 2GMr/c?p?, where p? = r? + (J/Mc)?cos?6.
Substituting for dt = 1 hour and dt = 7 years, one obtains the following relation:
1.334x10719M3r 3369802499

8.98755x101M2r2 + J2cos?6 ~ 3369802500

This equation fully describes a black hole of mass M, rotating with angular
momentum J, as observed by an observer at radial coordinate r and angular coordinate
0. The fraction on the right-hand-side fully depicts the 1 hour = 7 years dilation effect.
For the Schwarzschild metric, the orbital radius should be no smaller than 3 times the
gravitational radius, and such a time dilation could not be achieved for the planet of the
film. But as already said, the Kerr metric allows for stable orbits much closer to the
event horizon. Calculations indicate that for M = 108 solar masses, we get r = 1.48x1013
cm, O = w and ] = 8.80275x1057 J.s. This implies a black hole angular momentum ]
extraordinarily close (at 10-19) to the maximal possible value Jmax, a circular orbit lying in
the equatorial plane and a radius orbit practically equal to the black hole’s gravitational
radius. All this is theoretically possible, but by no ways realistic.

A CLEVER USE OF THE PENROSE PROCESS

Another effect specific to the physics of rotating black holes, which was correctly
depicted in Interstellar, is the Penrose process. The astronauts use it to benefit of a
particularly efficient gravitational assistance (called « slingshot effect »), which allows
their spaceship to plunge very close to the event horizon and escape with an increased
energy. In effect, the laws of Kerr black hole physics say that, although a black hole
prevents any radiation or matter from escaping, it can give up a part of its rotational
energy to the external medium. The key role is played by the ergosphere, a region
between the event horizon and the static limit below which, like in a maelstrom, space-
time itself is irresistibly dragged along with it (the so-called « Lense-Thirring effect »). In
a thought experiment, Roger Penrose suggested in 1969 the following mechanism?8. A
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projectile disintegrates into the ergosphere, one of the fragments falls into the event
horizon in a direction opposite to the black hole’s rotation, while the other fragment can
leave and be recovered, carrying more energy than the initial projectile. Replace the
projectiles by a spaceship which leaves a part of it to fall into the black hole along a
carefully chosen retrograde orbit, and /e tour est joué. The calculations indicate that one
can extract an energy equivalent to the rest-mass energy of the part lost into the black
hole, which, according to the famous formula E=mc? can already be huge, plus an
additional energy extracted from the spinning black hole, which has been slowed down
by the infalling fragment in a retrograde orbit. For a black hole like Gargantua, rotating
at almost the maximal speed, repeated Penrose processes could extract 29% of its mass.

TIME TRAVEL INSIDE GARGANTUA

In the last part of the film, the main character, Cooper, plunges into Gargantua. There,
beware the tidal forces breaking anything up ! Indeed in the Schwarzschild geometry,
the tidal forces become infinite as r -> 0; so, even for a supermassive black hole like
Gargantua, once past safely the event horizon and approaching the central singularity,
everything will be ultimately destroyed. Happily for the continuation of the story,
Gargantua has a high spin, and its lethal singularity has the shape of an avoidable ring.
Thus the space-time structure allows Cooper to use the Kerr black hole as a wormhole ;
he avoids the ring singularity and transports to another region of space-time. In the
movie he ends up in a five-dimensional universe, in which he will be able to go
backwards in time and communicate with his daughter by means of gravitational
signals.

A lot of research has been done on whether the laws of physics permit travel back in
time or not. Black hole physics gives interesting results but no firm answers. As seen
above, according to Penrose-Carter diagrams a rotating black hole could connect
myriads of wormholes to different parts of the space-time geometry. Since two events
can differ in time as well as in space, it would be possible to pass from one given position
at a given time, along a carefully chosen trajectory, through a wormhole, and arrive at
the same position but at a different time, in the past or future. In other words, the black
hole could be a sort of time travel machine.

Noneless a journey back through time is an affront to common sense. It is difficult to
accept that a man could travel back through time and kill his grandfather before he has
had the time to produce children. For the murderer could not have been born, and could
not have murdered him, and so on... Such time paradoxes have been pleasantly
presented in the celebrated series of movies Back to the future.

A journey into the past violates the law of causality, which requires that the cause
always precedes the effect. However, causality is a rule imposed by logic, not by the
theory of relativity. Causality is implicit in Special Relativity, where there is no
gravitation. Here, travelling into the past requires motion faster than light, and is
absolutely forbidden. However in general relativity, the universe is curved by
gravitation, and the space-time geometry can be distorted - by a wormhole associated to
a rotating black hole, for example -, enabling the past to be explored without having to
go faster than light.

Do such strange time warps exist in the Universe ? Perhaps yes at the quantum scale -
i.e. at a size much less than proton’s radius -, due to the quantum fluctuations of space-
time. If microscopic black holes were created soon after the Big Bang?®, the laws of
quantum physics would govern them, microscopic wormholes would also be created,
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and some elementary particles could furtively take these transitory tunnels in order to
move back in time. It is not theoretically impossible that very special conditions in the
early universe lead to the formation of mini-wormholes that have grown to become
macroscopic after a phase of primordial inflation. As a consequence, some supermassive
black holes, such as the Gargantua depicted in Interstellar, could be fossil giant
wormbholes, namely open gates leading to other regions of the cosmos, or to parallel
universes. And why not a 5-dimensional universe ? This is precisely what is assumed in
the movie.

THE FIFTH DIMENSION

From this moment, the story becomes more than ever speculative - as much as the
new theories that subtend it. The standard theory of gravity - general relativity -
describes our universe as geometry of three-dimensional space plus one dimension of
time. This is sometimes called 3 + 1 space, and it gives a very accurate description of the
universe we observe. But theorists like to play around with alternative models to see
how they differ from regular general relativity. They may look at 2 + 1 space, a kind of
« flatland » with time. There is not necessarily anything « real » about these models, and
there is not any experimental evidence to support anything other than 3 + 1 gravity. But
alternative models are useful because they help us gain a deeper understanding of
gravity.

One of these alternative models stems from the so-called brane cosmologies3°. The
central idea of brane cosmologies is that our 4-dimensional universe is restricted to a
« brane » inside a higher-dimensional space, called the «bulk » (an analogue of the
science-fiction notion of «hyperspace »). In the brane models, some of the extra-
dimensions are possibly infinite, and other branes can be moving through the bulk.
Gravitational interactions with the bulk can influence our brane, and thus introduce
effects not seen in standard cosmological models.

Lisa Randall and Raman Sundrum?3! have proposed one of these brane cosmologies at
the end of the 1990’s. There are two different versions of it, but both assume that our 4-
dimensional universe is a brane inside a 5-dimensional space-time, the bulk. In such a
framework, we can imagine (although very unrealistically) to create an artificial mini-
black hole and mini-wormhole, for instance in a powerful particle accelerator such as
the CERN’s Large Hadron Collider, and make it growing. In a Randall-Sundrum universe,
matter and light cannot propagate in the fifth dimension, and gravitational waves are
the only physical entities that can propagate in the bulk. It is exactly what is suggested in
the movie. The screenwriters have imagined a very advanced civilization born into the
bulk, able to master the laws of gravity to create wormholes and influence our usual
brane by means of gravitational waves. Since we learn at the end that this advanced
civilization is nothing else than our future humanity, we realize that one of the
« philosophical » issues of the film is that humanity should tend to understand the laws
of quantum gravity and master the new physical effects involved in order to save itself'!

THE FINAL EQUATION
At the very end of the film, the scientist’s character called Murph begins to write an

equation aimed to solve the problem of the incompatibility between general relativity
and quantum mechanics. We can see blackboards covered by diagrams and equations
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supposed to be a possible way to the « ultimate equation » of a so-called « Theory Of
Everything ». If discovered by the scientists, it would eventually help to solve all the
problems of humanity. I will not discuss the naivety of such a view, but briefly discuss
the question whether the equations on the screen have any meaning.

At first sight we can doubt because the unification of general relativity and quantum
mechanics remains unsolved - even if various approaches, such as the loop quantum
gravity3?, the string theory3? (of which the Randall-Sundrum model referred above is a
very particular solution) or the non-commutative geometry34, are intensively explored
by theoretical physicists all around the world.

Clearly the Interstellar filmmakers have bet on the most « fashionable » attempt for
unifying all fundamental interactions : string theory. String theory stipulates that the
fundamental constituents of matter are not point-like particles but open or closed
strings on the scale of the Planck length (10-33 cm), whose vibrational modes define
particle properties. In this framework, space-time becomes a derived concept, which
only makes sense at a scale larger than that of the strings. String theory, which comes in
five different varieties, aroused such keen interest that in the 1990’s, certain theorists
believed it was capable of giving a « Theory Of Everything ». However, the mathematical
difficulties involved are formidable, and it is not certain that they will be resolved in the
future3>. The five different string theories have given birth to a larger supposed theory,
of which the string theories would only be limits : not only one-dimensional lines could
vibrate, but also two-dimensional surfaces and other spaces of higher dimension, such
as membranes - from whence the name M-theory given to this hypothesis.

Returning to the ultimate equation briefly seen in Interstellar on Murph’s blackboard,

something looking like S = [ ./—gs d®x{Lp,;x + -+ } as far as | can remember, physicists

who know a little bit of string theory will recognize the so-called effective action of M-
theory in the lowest approximation of its perturbative development. In simpler terms, it
gives a hint of what would like the « ultimate equation » of physics if M-theory was the
correct framework. It is probably not, but I imagine that Kip Thorne made a clin d’ceil to
string theorists to mean that, in his opinion, a future Theory of Everything will probably
be similar to M-theory. I do not share this point of view, but it is rather unexpected to
find such a sophisticated message in a Hollywood movie.

The gs and d°x terms mean that we deal with a theory in 5 dimensions : 1 for time and
4 for space, like in the Randall-Sundrum case. In a 4-dimensional space without
curvature, the analog of the cube is called an hypercube or a tesseract. The tesseract is to
the cube as the cube is to the square. Just as the surface of the cube consists of 6 square
faces, the hypersurface of the tesseract consists of 8 cubical cells, giving a visual effect
which has been excitingly represented in Interstellar. But for my part, from an artistic
point of view, [ am much more moved by the Corpus Hypercubus painted in 1954 by
Salvador Dali. The Spanish artist depicted the cross of crucufixion as a tesseract to
signify that, just as God could exist in a space which is incomprehensible to the humans,
the hypercube exists in four space dimensions which are equally inaccessible to
ordinary minds.

CONCLUSION
To summarize, the movie Interstellar is appealing by the fact that it tries to combine a
great story (saving humankind by interstellar travel) with accurate science, more or less

realistic depictions of general relativistic phenomena, and hazardous extrapolations
about new physical laws that could stem from quantum gravity scenarios. But we must
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keep in mind that Interstellar is primarily a science-fiction movie, so that artistic license
and scientific extrapolation are integrant part of the game. The main interest of
discussing its science accuracy is thus educational. Hollywood becoming aware of
science and trying to present its ideas in a correct way is good news. A few months
earlier one could see Gravity and its impressive show of a hostile and weightlessness
space. But most of the science shown in Gravity could be understood in the framework of
Newtonian theory, published more than 400 years ago and assumed to be well-known of
everybody. On the contrary, most of the phenomena depicted in Interstellar require to
understand the basics of General Relativity - the theory gravitation due to Albert
Einstein and whose centenarian we shall celebrate in 2015 -, as well as Quantum
Mechanics and even a little bit of String Theory ... By inviting the spectators to wonder
about deep questions on time, space, gravity and so on, Interstellar can drag the
youngest to consider careers in science rather than in finance or law. It is completely up
to a genre called in French «le merveilleux scientifique », that is the adventure of a
science pushed to the marvel, or of a marvel envisaged scientifically.
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