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Abstract

We analyze the properties of circular orbits of test particles on the equatorial plane of a rotating

central mass whose gravitational field is described by the Kerr spacetime. For rotating black

holes and naked singularities we explore all the spatial regions where circular orbits can exist and

analyze the behavior of the energy and the angular momentum of the corresponding test particles.

In particular, we find all the radii at which a test particle can have zero angular momentum due

to the repulsive gravity effects generated by naked singularities. We classify all the stability zones

of circular orbits. It is shown that the geometric structure of the stability zones of black holes is

completely different from that of naked singularities.
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I. INTRODUCTION

The Kerr spacetime describes the exterior gravitational field of a rotating mass M with

specific angular momentum a = J/M , where J is the total angular momentum of the

gravitational source. In Boyer–Lindquist coordinates, the Kerr metric has the form

ds2 = dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2) sin2 θdφ2 − 2M

ρ2
r(dt− a sin2 θdφ)2 , (1)

where

∆ ≡ r2 − 2Mr + a2, and ρ2 ≡ r2 + a2 cos2 θ . (2)

This metric is an axisymmetric, stationary (nonstatic) asymptotically flat solution of Ein-

stein equations in vacuum. The redshift infinity surface and event horizons are described

respectively by the equations

gtt = 0, grr = 0 . (3)

Then, the solutions of these equations are respectively

r0± = M ±
√
M2 − a2cos2θ , and r± = M ±

√
M2 − a2 . (4)

Considering that θ ∈ [0, π], the radii r0± and r± exist when |a| ≤M (Kerr black hole); in

particular, for |a| = M (extreme Kerr black hole) the two horizons coincide, r+ = r− = M .

The outer static limit is r0+, it corresponds to the outer boundary of the ergosphere.

A naked singularity case occurs when |a| > M (for more details about the Kerr metric

see, for instance, [1–3] and [4–7]).

The most important limiting cases are the Schwarzschild metric which is recovered for

a = 0, and the Minkowski metric of special relativity for a = M = 0. The Kerr metric in

Boyer–Lindquist coordinates is singular when ρ = 0 and when ∆ = 0. However, a calculation

of the Kretschmann curvature scalar reveals that a true curvature singularity occurs only for

ρ = 0. Therefore, the surface represented by r = 0 and θ = π/2 corresponds to an intrinsic

curvature singularity [1, 2, 8, 9].

In previous works [10–12], the motion of test particles along circular orbits around static,

spherically symmetric spacetimes was investigated in detail. We are now interested in study-

ing the more general case of a stationary, axisymmetric spacetimes. The study of the circular

motion around compact objects is of particular interest in the context of astrophysics. In-

deed, an infinitesimal thin disk of test particles traveling in circular orbits can be considered
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as an idealized model for an accretion disk of matter surrounding the central body. Such an

idealized model could be used, for instance, to estimate the amount of energy released by

matter being accreted by the central mass [13]. In addition, one can ask the question whether

this hypothetical accretion disk carries information about the nature of the central compact

object. In a recent work [10–12], this question was answered positively. Indeed, we found

that the geometric structure of the infinitesimal thin disk around a Reissner-Nordström

compact object strongly depends on the mass-to-charge ratio.

In the present work, we generalize our previous analysis and study the motion of test

particles along circular orbits on the equatorial plane of the Kerr spacetime. We are espe-

cially interested in studying the differences between the gravitational field of black holes and

naked singularities. Test particles moving along circular orbits are particularly appropriate

to measure the effects generated by naked singularities. For the sake of simplicity, we limit

ourselves to the case of equatorial trajectories because they are confined in the equatorial

geodesic plane. This is a consequence of the fact that the Kerr solution is invariant under

reflections with respect to the equatorial plane. Non-equatorial geodesics present an addi-

tional difficulty because the corresponding planes are not geodesic. This case will not be

considered in the present work.

This paper is organized as follows. In Sec. II, we use the formalism of the effective

potential to derive the conditions for the existence of circular orbits on the equatorial plane

of the Kerr spacetime. Sec. III is devoted to the study of circular orbits around a rotating

black hole. In Sec. IV, we investigate the case of naked singularities and find all the regions

where circular orbits are allowed. We analyze in detail the values of the energy and the

angular momentum as well as the stability properties of the test particles for all the allowed

regions in black holes and naked singularities. In Sec. IV D, we present a summary of

behavior of the radii that determine the distribution of test particles around the central

body, and of the radii of the last stable circular orbits. Finally, in Sec. V we discuss our

results.

II. CIRCULAR ORBITS

We consider the circular motion of a test particle of mass µ in the background represented

by the Kerr metric (1). We limit ourselves to the case of orbits situated on the equatorial
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plane only which are defined by means of the conditions

θ = π/2, and
dθ

dτ
= 0 , (5)

where τ is the particle’s proper time. We note that for θ = π/2 the outer boundary of the

ergosphere Eq. (4) is r0+ = 2M while r0− = 0.

The tangent vector ua to a curve xα(τ) is uα = dxα/dτ = ẋα. The momentum pα = µẋα

of a particle with mass µ can be normalized so that gαβẋ
αẋβ = −k, where k = 0, 1,−1 for

null, spacelike and timelike curves, respectively.

Since the metric is independent of φ and t, the covariant components pφ and pt of the

particle’s four–momentum are conserved along its geodesic. Thus, we use the fact that the

quantity

E ≡ −gαβξαt pβ (6)

is a constant of motion, where ξt = ∂t is the Killing field representing stationarity. In

general, we may interpret E, for timelike geodesics, as representing the total energy of the

test particle for a particle coming from radial infinity, as measured by a static observer at

infinity. On the other hand, the rotational Killing field ξφ = ∂φ yields the following constant

of motion

L ≡ gαβξ
α
φp

β . (7)

We interpret L as the angular momentum of the particle.

In this work, we analyze circular orbits involving a potential function V (r). It represents

that value of E/µ that makes r into a “turning point” (V = E/µ), in other words, that

value of E/µ at which the (radial) kinetic energy of the particle vanishes [14]. The (positive)

effective potential is

V = − B

2A
+

√
B2 − 4AC

2A
, (8)

where [1–3, 8, 9]

A ≡
(
r2 + a2

)2 − a2∆, (9)

B ≡ −2aL
(
r2 + a2 −∆

)
, (10)

C ≡ a2L2 −
(
M2r2 + L2

)
∆ . (11)

The negative solution of the effective potential equation

V − ≡ − B

2A
−
√
B2 − 4AC

2A
(12)
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can be studied by using the following symmetry

V (L) = −V −(−L). (13)

We can note that the potential function (8) is invariant under the mutual transformation

a→ −a and L→ −L. Therefore, we will limit our analysis to the case of positive values of

a for co–rotating (L > 0) and counter–rotating orbits (L < 0).

The investigation of the motion of test particles in the spacetime (1) is thus reduced to

the study of motion in the effective potential V . We will focus on (timelike) circular orbits

for which (see also [15])

ṙ = 0, V = E/µ, ∂V/∂r = 0. (14)

Moreover, we use the following notation for the angular momentum solutions

L±
µM

≡

∣∣∣ a2M2 ± 2 a
M

√
r
M

+ r2

M2

∣∣∣√
r2

M2

(
r
M
− 3
)
∓ 2 a

M

√
r3

M3

, (15)

and the corresponding energies

E
(+)
±

µ
≡ E(L±)

µ
=

(r5M)1/4
∣∣∣∣[a2+(r−2M)r]

(
a∓
√

r3

M

)∣∣∣∣√
(r−3M)

√
r
M
∓2a

+ 2arL±

r [r3 + a2(r + 2M)]
, (16)

and

E
(−)
±

µ
≡ E(−L±)

µ
=

(r5M)1/4
∣∣∣∣[a2+(r−2M)r]

(
a∓
√

r3

M

)∣∣∣∣√
(r−3M)

√
r
M
∓2a

− 2arL±

r [r3 + a2(r + 2M)]
, (17)

respectively. The investigation of the above expressions for the angular momentum and

energy of the test particle for different values of the radial coordinate allows us to extract

physical information about the behavior of the gravitational source. We mention for an

analysis of the test particle motion in Kerr spacetime for example [16–37].

III. BLACK HOLES

In this section we shall consider the black hole case 0 < a ≤ M . In the non-extreme

black hole case (0 < a < M), it is gtt > 0 for 0 < r < r0− and r > r0+. Inside the interval

r0− < r < r0+ the metric component gtt changes its sign. Moreover, gtt vanishes for r = r0±

5



and 0 < cos2 θ ≤ 1, and also at r = 2M for θ = π/2. The location of these hypersurfaces is

such that r0− < r− < r+ < r0+.

The region r0− < r < r0+, where gtt < 0, is called ergoregion. In this region the Killing

vector ξat = (1, 0, 0, 0) becomes spacelike or gabξ
a
t ξ

b
t = gtt < 0. This fact implies in particular

that a static observer, i.e. an observer with four velocity proportional to ξat so that θ̇ = ṙ =

φ̇ = 0, cannot exist inside the ergoregion; an observer inside this region is forced to move.

For the extreme black hole case (a = M) it holds r− = r+ = M . Then, gtt > 0 for

0 < r < r0− and r > r0+ when 0 ≤ cos2 θ < 1, and for 0 < r < M and r > M when cos2 θ = 1;

moreover, gtt = 0 at r = r0± in the interval 0 ≤ cos2 θ < 1, and at r = M for cos2 θ = 1.

The location of the special radii is such that r0− < r− = r+ < r0+ for 0 ≤ cos2 θ < 1 and

r0− = r− = r+ = r0+ for cos2 θ = 1.

To investigate the solutions of the conditions of circular motion given by Eq. (14) it is

convenient to introduce the following radii

ra ≡ 4M cos

[
1

6
arccos

[
−1 + 2

a2

M2

]]2
, (18)

rc2 ≡ 4M sin

[
1

6
arccos

[
1− 2

a2

M2

]]2
, (19)

rγ ≡ 2M

(
1 + sin

[
1

3
arcsin

[
1− 2

a2

M2

]])
, (20)

which have the two limiting cases

ra = rγ = 3M, rc2 = 0 for a = 0, (21)

and

ra = 4M, rc2 = rγ = M for a = M, (22)

The dependence of these radii from the specific angular momentum is shown in Fig. 1. It is

then possible to show that circular orbits can exist only for r > rγ and that there are two

regions with different values for the angular momentum, namely

rγ < r ≤ ra, where L = L−, (23)

and

r > ra, where L = −L+, and L = L− . (24)

Moreover, in the extreme black hole case, a = M , the circular orbits are situated at

r = ra = 4M , (25)
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FIG. 1: The outer horizon r+ (dashed curve), the inner horizon r− (dotted curve), and ra (black curve), rc2

(gray curve), and rγ (thick black curve) are plotted as function of the black hole intrinsic angular momentum

a/M . The dotted dashed gray line represents the outer boundary of the ergosphere r0+ = 2M .

with two different possible values for the angular momentum

L =
13

4
√

2
Mµ with E =

5

4
√

2
µ, and L = − 13

4
√

2
Mµ with E =

149

140
√

2
µ . (26)

As for the first interval rγ < r ≤ ra, the behavior of the corresponding energy and

angular momentum is illustrated in Fig. 2. First we note that the area covered by this

region increases as the specific angular momentum of the black hole increases. Whereas ra

and rγ coincide and equal 3M for nonrotating black holes (a = 0), their maximum separation

is reached in the case of extreme black holes (a = M) for which rγ coincides with the outer

horizon radius. In the region r > ra, circular orbits are allowed with different values of the

angular momentum (the particular case with L = −L+ is illustrated in Fig. 3).

We see that in the gravitational field of a black hole with 0 < a < M , particles with

angular momentum L = L− can exist in the entire region r > rγ. As the radius rγ is

approached the angular momentum L− and the corresponding energy E
(+)
− = E(L−) diverge,

indicating that the hypersurface r = rγ is lightlike, i.e., it is the limiting orbit for timelike

particles with L = L−. Moreover, particles with angular momentum L = −L+ can move

along circular orbits in the interval r > ra, and the limiting lightlike counter–rotating orbit

corresponds to r = ra where both L+ and the energy E
(−)
+ = E(−L+) diverge.
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FIG. 2: The energy E
(+)
− ≡ E(L−) (upper plot) and the angular momentum L− (bottom plot) of circular

orbits in a rotating Kerr black hole with angular momentum 0 < a ≤ M , for selected values of a/M in the

interval r > rγ . For a 6= M the energy E
(+)
− is always positive and diverges as r approaches rγ . The dotted

dashed gray line represents the outer boundary of the ergosphere r0+ = 2M .
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hole with angular momentum 0 < a ≤M , for selected values of a/M in the region r > ra. The energy E
(−)
+

is always positive and diverges as r approaches ra.
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A. Stability

From the physical viewpoint it is important to find the minimum radius for stable circular

orbits which is determined by the inflection points of the effective potential function, i.e.,

by the condition

∂2V /∂2r = 0. (27)

The behavior of the effective potential (8) for a fixed value of a/M and different values of

the particle angular momentum L/(Mµ) is sketched in Fig. 4. The radii of the last stable

circular orbits are written as [9, 38]

r∓lsco = M
[
3 + Z2 ∓

√
(3− Z1)(3 + Z1 + 2Z2)

]
, (28)

where

Z1 ≡ 1 +

(
1− a2

M2

)1/3 [(
1 +

a

M

)1/3
+
(

1− a

M

)1/3]
, (29)

and

Z2 ≡
√

3
a2

M2
+ Z2

1 . (30)

In particular, for a = 0 we have that r∓lsco = 6M , and when a = M we obtain r−lsco = M for

co–rotating orbits and r+lsco = 9M for counter–rotating orbits (see also Fig. 5). In general,

the radii r+lsco and r−lsco correspond to the last stable circular orbit of a test particle with

angular momentum L+ and L−, respectively.

In Fig. 6 the energy E±lsco/µ = E(r±lsco)/µ and the angular momentum L±lsco/µ = L(r±lsco)/µ

of the last stable circular orbits are plotted as functions of the ratio a/M . One can see that

E+
lsco ≤ E−lsco, and E+

lsco = E−lsco for a = 0. (31)

Moreover, as the ratio a/M increases, the energy E+
lsco decreases and the energy E−lsco

increases. Instead, the corresponding angular momenta of the test particles decrease as the

intrinsic angular momentum increases.

To classify the circular orbits in a Kerr black hole it is convenient to distinguish two

different regions: The first one is a ∈ [0, ã[, where ã ≈ 0.638285M is the value at which ra

and r−lsco coincide, and the second one is a ∈]ã, 1[.

In the first region a ∈ [0, ã[, where ra < r−lsco, we see that there exist unstable circular

orbits with L = L− in the interval rγ < r < ra. Moreover, in the interval ra < r < r−lsco
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FIG. 4: The effective potential V/m for a neutral particle of mass µ in a Kerr black hole with a/M = 0.5 is

plotted as a function of r/M in the range [1.71, 10] for the radial coordinate and in the range [−10, 10] for the

angular momentum L/(µM). The outer horizon is situated at r+ = (1+1/
√

2)M (see text). Circular orbits

exist for r > 2 [1 + sin(π/18)]M ≈ 2.347M . The solid curve represents the location of circular orbits (stable

and unstable). Stable (unstable) circular orbits are minima (maxima) of the effective potential function.

The last stable circular orbits are represented by a point. The minima are located at r = 4.233M with

L = 2.903/(Mµ) and E = 0.918µ, and at r = 7.554M with L = −3.884/(Mµ) and E = 0.955µ.

there are unstable circular orbits with L = L− and L = −L+. In r−lsco < r < r+lsco there are

stable circular orbits with L = L− and unstable orbits with L = −L+. Finally, in the region

r > r+lsco there are stable circular orbits with L = L− as well as with L = −L+.

Let us consider the second region a ∈]ã, 1[ where ra > r−lsco. We see that in the interval

rγ < r < r−lsco there are unstable circular orbits with L = L−. Moreove, in r−lsco < r < ra

there are stable orbits with L = L−. In the region ra < r < r+lsco there are stable circular

orbits with L = L− and unstable orbits with L = −L+. Finally, for r > r+lsco there are stable
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FIG. 5: The outer horizon r+ (dashed curve), the inner horizon r− (dotted curve), and ra (black curve),

rc2 (gray curve), rγ (thick black curve), last stable circular orbits r+lsco (dotdashed black curve) and r−lsco

(dotdashed gray curve) are plotted as functions of the black hole intrinsic angular momentum a/M . The

curves r+lsco and r−lsco represent the radius of the last stable circular orbit for particles with angular momentum

−L+ and L−, respectively. Circular orbits with L = L− exist for r/M > rγ and with L = −L+ for r > ra.

The line ã ≈ 0.638285M is also plotted.The dotted dashed gray line represents the outer boundary of the

ergosphere r0+ = 2M .
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FIG. 6: The energy Elsco/µ and the angular momentum L±lsco/(Mµ) of the last stable circular orbit as

functions of the ratio a/M ≤ 1 of a Kerr black hole.

circular orbits with L = L− and L = −L+. The classification of circular orbits in this case

is summarized in Table I.

A detailed analysis of the behavior of the energy, angular momentum and effective po-

tential of test particles is presented in Figs. 7 and 8 for a/M = 0.5 < ã, in Figs. 9 and 10
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The case 0 < a < M

Region Angular momentum Stability

]rγ , ra] L− r−lsco

]ra,∞[ −L+ (L−) r+lsco (r−lsco)

0 < a < ã (ra < r−lsco)

]rγ , ra[ L− Unstable

]ra, r
−
lsco[ (L−, −L+) Unstable

]r−lsco, r
+
lsco[ L− (−L+) Stable (Unstable)

]r+lsco,∞[ (L−, −L+) Stable

ã ≤ a < M (ra ≤ r−lsco)

]rγ , r
−
lsco[ L− Unstable

]r−lsco, ra[ L− Stable

]ra, r
+
lsco[ L− (−L+) Stable (Unstable)

]r+lsco,∞[ (L−, −L+) Stable

TABLE I: Classification of circular orbits of test particles in a Kerr black hole. Here ã ≈ 0.638285M . For

each region we present the value of the orbital angular momentum and the stability property.

for a/M = 0.7 > ã, and finally in Figs. 11 and 12 for the limiting case of an extreme black

hole a/M = 1.

13



2 4 6 8 10 12

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

r�M

E
�Μ

a=0.5M

E-

E-
+

E-

rΓ

r+ ra

rlsco- rlsco-+

0 2 4 6 8 10 12 14

-5

0

5

r�M

a=0.5M

L-

-L+

L-

r+

rΓ

ra
rlsco- rlsco-+

FIG. 7: The energy E/µ (left plot) and the angular momentum L/(µM) (right plot) of circular orbits in

a Kerr black hole with a = 0.5M as functions of the radial coordinate r/M . The energy E
(−)
+ ≡ E(−L+)

and the angular momentum −L+ are represented by thick black curves, and the energy E
(+)
− ≡ E(L−)

and the angular momentum L− by black curves. In rγ < r < ra there are unstable circular orbits with

L−. For ra < r < r−lsco there are unstable circular orbits with L− and −L+. For r−lsco < r < r+lsco there

are stable circular orbits with L− and unstable with −L+, finally for r > r+lsco there are stable circular

orbits with L− and −L+. The radii r+ = 1.70711M , rγ = 2.3473M , ra = 3.53209M and r−lsco = 4.233M ,

and r+lsco = 7.55458M are also plotted. It is evident that E(−L+) > E(L−). The dotted dashed gray line

represents the outer boundary of the ergosphere r0+ = 2M .
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FIG. 8: The effective potential V/µ of a Kerr black hole with a = 0.5M as a function of r/M . The radii

r+ = 1.70711M , rγ = 2.3473M , ra = 3.53209M , r−lsco = 4.233M , and r+lsco = 7.55458M are also plotted.

The left upper plot shows the effective potential with orbital angular momentum L = L− = 3.29806Mµ for

which we find a minimum (stable orbit) at r = 7.85256M with energy E−/µ = 0.942949 and a maximum

(unstable orbit) at r = 3M with E−/µ = 0.979181. The right upper plot corresponds to an effective

potential with orbital angular momentum L = L− = 2.90877µ (black curve) and L = −L+ = −6.45235Mµ

(gray curve). For L = L− there is a minimum (stable orbit) at r = 4.49925M with E− = 0.918487µ and a

maximum (unstable orbit) at r = 4M with E− = 0.918559µ. For L = −L+ there is a maximum (unstable

orbit) at r = 4M with E
(−)
+ = 1.23744µ. The bottom plot is for an effective potential with orbital angular

momentum L = L− = 4.09649µ (black curve) and L = −L+ = −4.36042Mµ (gray curve). For L = L−

there is a minimum (stable orbit) at r = 14M with E− = 0.96609µ and a maximum (unstable orbit) at

r = 2.65996M with E− = 1.134µ. For L = −L+ there is a maximum (unstable orbit) at r = 5.07411M with

E
(−)
+ = 0.991686µ and a minimum (stable orbit) at r = 14M with E

(−)
+ = 0.968052µ. The dotted dashed

gray line represents the outer boundary of the ergosphere r0+ = 2M .
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FIG. 9: The energy E/µ (left plot) and the angular momentum L/(µM) (right plot) of circular orbits in a

Kerr black hole with a = 0.7M as functions of r/M . The energy E−+ ≡ E(−L+) and the angular momentum

−L+ are represented by thick black curves, and the energy E+
− ≡ E(L−) and the angular momentum L−

by black curves. The radii r+ = 1.54772M , rγ = 2.01333M , ra = 3.72535M , r−lsco = 3.39313M , and

r+lsco = 8.14297M are also plotted. The dotted dashed gray line represents the outer boundary of the

ergosphere r0+ = 2M . In rγ < r < r−lsco there are unstable circular orbits with L−; in r−lsco < r < ra there

are stable orbits with L−; in ra < r < r+lsco there are stable circular orbits with L− and unstable with −L+;

finally, for r > r+lsco there are stable circular orbits with L− and −L+. It is clear that E(−L+) > E(L−).
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FIG. 10: The effective potential V/µ of a Kerr black hole spacetime with a = 0.7M as function of r/M . The

radii r+ = 1.54772M , rγ = 2.01333M , ra = 3.72535M , r−lsco = 3.39313M , and r+lsco = 8.14297M are plotted.

The left upper plot represents the effective potential with orbital angular momentum L = L− = 2.61948Mµ

for which we find a minimum (stable orbit) at r = 3.9473M with E− = 0.900551µ, and a maximum (unstable

orbit) at r = 3M with E− = 0.901712µ. The right upper plot shows an effective potential with orbital

angular momentum L = L− = 2.59216Mµ for which there exists a minimum (stable orbit) at r = 3.6M

with E− = 0.897167µ, and a maximum (unstable orbit) at r = 3M with E− = 0.897167µ. The left bottom

plot corresponds to effective potentials with orbital angular momenta L = L− = 2.91563µ (black curve)

and L = −L+ = −4.2694Mµ (gray curve). For L = L− there is a minimum (stable orbit) at r = 6.M with

E− = 0.925818µ, and a maximum (unstable orbit) at r = 2.50052M with E− = 0.960213µ. For L = −L+

there is a maximum (unstable orbit) at r = 6M with E
(−)
+ = 0.973034µ. The right bottom plot is for effective

potentials with orbital angular momenta L = L− = 4.05058µ (black curve) and L = −L+ = −4.42036Mµ

(gray curve). For L = L− there is a minimum (stable orbit) at r = 14M with E− = 0.965775µ, and

a maximum (unstable orbit) at r = 2.1819M with E− = 1.23283µ. For L = −L+ there is a maximum

(unstable orbit) at r = 5.6208M with E
(−)
+ = 0.98443µ, and a minimum (stable orbit) at r = 14M with

E
(−)
+ = 0.968527µ. The dotted dashed gray line represents the outer boundary of the ergosphere r0+ = 2M .
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FIG. 11: The energy E/µ (left plot) and the angular momentum L/(µM) (right plot) of circular orbits in

an extreme Kerr black hole (a = M) as functions of the radial coordinate r/M . The energy E(−L+) and

the angular momentum −L+ are represented by thick black curves, and the energy E(L−) and the angular

momentum L− by black curves. The radii r+ = rγ = M (dashed curve) and ra = 4M (black curve) are

also plotted. There exist circular orbits with L = L− in r > rγ . The energy E(L−) is always positive and

decreases as r approaches rγ . Circular orbits with L = −L+ exist also in r > r+. The energy E(−L+) is

always positive and increases as r approaches ra. It is evident that E(−L+) > E(L−).

To present the main result of our analysis in a plausible manner it is convenient to

introduce the idea of a hypothetical accretion disk formed by test particles on circular orbits

around the central massive object. We consider this model only in the region r > r0+. The

structure of such an accretion disk depends explicitly on the stability properties of the test

particles. In fact, as mentioned above the radii r−lsco and r+lsco represent the last stable orbits

for particles with angular momentum L = L− (corotating particles) and L = −L+ (counter-

rotating particles), respectively. Then, in the disk contained within the radii [r−lsco, r
+
lsco] only

the corotating particles can move along stable trajectories. If a counter-rotating particle is

located inside this disk (this is possible if the radius of the orbit is r > ra), its orbit is

unstable and it must decay into an orbit with radius r > r+lsco. Consequently, the outer

disk with r > r+lsco can be build of corotating and counter-rotating particles which are both

stable in this region. The size of the inner disk [r−lsco, r
+
lsco] depends on the value of the

intrinsic angular momentum of the black hole a; the maximum size is reached in the case of

an extreme black hole (a = M) with r+lsco − r
−
lsco = 8M whereas for a = 0 the radii coincide

r+lsco = r−lsco and the disk disappears (cf. Fig. 5).
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FIG. 12: The effective potential V/µ of an extreme Kerr black hole for a test particle with a fixed orbital

angular momentum as function of r/M . The radii r+ = rγ = M (dashed curve) and ra = 4M (black curve)

are plotted. The dotted dashed gray line represents the outer boundary of the ergosphere r0+ = 2M . The

left plot shows the effective potentials with orbital angular momenta L = L− (black curve) and L = −L+

(gray curve). For L = L− there is a minimum (stable orbit) at r = 5M with L− = 2.53075Mµ and

E− = 0.906154µ. For L = −L+ there is a maximum (unstable orbit) at r = 5M with −L+ = −5.79614Mµ

and E−+ = 1.08576µ. There exist circular orbits with L = L− in the region r > rγ , and orbits with L = −L+

in the region r > r+. The dotted dashed gray line represents the outer boundary of the ergosphere r0+ = 2M .

IV. NAKED SINGULARITIES

In the naked singularity case (a > M), it is gtt > 0 for 0 < r < r0− and r > r0+ when

0 ≤ cos2 θ < 1/a2, for r > 0 with r 6= r0− when cos2 θ = 1/a2, and finally for r > 0 when

1/a2 < cos2 θ ≤ 1. Moreover, gtt = 0 at r = 2M if θ = π/2, at r = r0± for 0 < cos2 θ < 1/a2,

and at r = r0− for cos2 θ = 1/a2. As in the black hole case, in the region (r0−, r
0
+) the

Killing vector ξat = (1, 0, 0, 0) becomes spacelike. On the equatorial plane, θ = π/2, it is

r0+ = 2M and r0− = 0. In this case, the timelike Killing vector becomes spacelike in the

region 0 < r < r0+, for all a > M .

According to the results presented in Sec. II, to explore the motion of test particles along

circular orbits we must solve the following equations

ṙ = 0, V = E/µ, ∂V/∂r = 0 (32)

for the effective potential (8) with a > M , taking into account that in this case no horizons

exist. It turns out that it is convenient to study separately the range a ≥ 3
√

3/4M (see
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FIG. 13: Angular momentum and energy of test particles in a Kerr naked singularity with a ≥ (3
√

3/4)M .

The angular momentum L = L− (left plot) and the energy E
(+)
− ≡ E(L−) (right plot) of circular orbits are

plotted as functions of r > 0 and a ≥ (3
√

3/4)M . The particle’s energy is always positive. It is possible to

note a region of minima for the energy corresponding to the minima of L−.

Sec. IV A) and the range M < a < 3
√

3/4M (see Sec. IV B) for the values of the intrinsic

angular momentum of the naked singularity.

A. The case a ≥ (3
√

3/4)M

In this case we find that for all r > 0 there exist circular orbits with angular momentum

L = L− and energy E
(+)
− = E(L−). In Fig. 13 we illustrate the behavior of the energy and

angular momentum of test particles for this case.

An analysis of the effective potential shows that a second class of circular orbits with

L = −L+ and energy E
(−)
+ = E(−L+) can be found in the region r > ra where

ra
M
≡ 2 +

1 +

(
2 a2

M2 − 1 + 2
√

a4

M4 − a2

M2

)2/3

(
2 a2

M2 − 1 + 2
√

a4

M4 − a2

M2

)1/3
. (33)

The expression for the energy and angular momentum of the test particles in this region is

depicted in Fig. 14.

The special radius ra and the angular momentum for this radius L(ra)/(µM) increase

as the intrinsic angular momentum of the naked singularity increases, as shown in Fig. 15.

Notice that we are using the same notation ra for the radius (18) of a black hole and the
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FIG. 14: Angular momentum and energy of test particles in a Kerr naked singularity with a ≥ (3
√

3/4)M .

The angular momentum L = −L+ (left plot) and the energy E
(−)
+ ≡ E(−L+) (right plot) of circular orbits

are plotted as functions of r > ra and a ≥ (3
√

3/4)M . The particle’s energy is always positive. It is possible

to note a region of minima for the energy corresponding to the minima of −L+.
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FIG. 15: The graphic shows the radius ra/M (left plot) as a function of the intrinsic angular momentum

parameter a/M in the interval (3
√

3/4, 100), and the particle orbital angular momentum L(ra)/(µM) (right

plot) as a function of a/M . The dotted dashed gray line represents the outer boundary of the ergosphere

r0+ = 2M .

radius (33) of a naked singularity. Although these radii are different in their definitions, we

use the same notation because in the limiting case a = M they both have the same limiting

value ra = 4M . This will turn out later on to be convenient when we compare the results

of black holes with those of naked singularities.

The energies E(L−) and E(−L+) for the two classes of test particles allowed in this are
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FIG. 16: The energy of circular orbits in a Kerr naked singularity with source angular momentum a ≥

(3
√

3/4)M is plotted in terms of the radial coordinate r/M for selected values of a/M . The left plot

corresponds to particles with L = L−, and the right plot is particles with L = −L+. The energy is always

positive and diverges as the limiting radius is approached. The dotted dashed gray line represents the outer

boundary of the ergosphere r0+ = 2M .

compared in Fig. 16. For particles with angular momentum L = L− we see that the energy

diverges as the limiting value r → 0 is approached. Similarly, for particles with L = −L+

the energy diverges as the radius approaches the limiting value r → ra, indicating that the

orbit located at r = ra is lightlike.

We now study the stability of the test particles in this specific case. An analysis of the

turning points of the potential (8) indicates that the radius of the last stable circular orbit

for particles with L = L− (located in the region r > 0) is given by

r̄lsco ≡M
(

3− Z2 +
√

(3− Z1)(3 + Z1 − 2Z2)
)
, (34)

where Z1 and Z2 were defined in Eq. (29) and Eq. (30), respectively. Moreover, for particles

with L = −L+ located at r > ra there exists a minimum radius r = r+lsco for the last stable

circular orbit. The expression for r+lsco is given in Eq. (28). The behavior of this limiting

radii in terms of the intrinsic angular momentum of the naked singularity is depicted in

Fig. 17. If follows that both radii increase as the value of a/M increases.

It turns out that it is necessary to distinguish two different regions, namely a/M ∈

[3
√

3/4, 9] and a/M ∈]9,+∞[.
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FIG. 17: Radius of the last stable circular orbits for test particles in a Kerr naked singularity with a ≥

3
√
3

4 M . The dotted dashed gray line represents the outer boundary of the ergosphere r0+ = 2M . The radius

r̄lsco (r+lsco) is the limiting minimum radius of stability for particles with L = L− (L = −L+).

1. The region a/M ∈ [3
√

3/4, 9]

In the first region a/M ∈ [3
√

3/4, 9] which is characterized by

r̄lsco < ra < r+lsco, and r̄lsco = ra for a ≈ 9M, (35)

there exist unstable circular orbits with L = L− in the interval 0 < r < r̄lsco, and stable

orbits with L = L− in the interval r̄lsco < r < ra. Moreover, in the region ra < r < r+lsco

there are stable orbits with angular momentum L = L−, and unstable orbits with angular

momentum L = −L+. Finally, for r > r+lsco there are stable orbits with L = L− and

L = −L+. In Fig. 18 we present a summary of this case.

As a concrete example for this case we consider now the motion of test particles around

a naked singularity with a = 3
√
3

4
M . In this case, circular orbits with orbital angular

momentum L = L− exist in the range r > 0, and with L = −L+ in the range r > ra ≈

4.259M . The energy and angular momentum of these circular orbits are plotted in Figs. 19.

In Fig. 20 the effective potential is plotted for different values of the orbital angular

momentum. In particular, an “orbit” with zero angular momentum (L = 0) and energy
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FIG. 19: The angular momentum and the energy of test particles in the field of a Kerr naked singularity

with a = 3
√

3/4M ≈ 1.30M are plotted as functions of the radial coordinate r/M . The dots represent the

last stable circular orbits; numbers close to the points denote the energy V/µ of the last stable circular orbit.

For r > ra ≈ 4.2592M there exist circular orbits with angular momentum L = −L+, and for all r > 0 with

L = L− (see text). For r = 0.75M the particle has L = 0 and energy E ≈ 0.333M . The dotted dashed gray

line represents the outer boundary of the ergosphere r0+ = 2M .
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FIG. 20: The effective potential of a naked singularity with a = 3
√
3

4 M for fixed values of the particle

angular momentum L/(Mµ). The dotted dashed gray line represents the outer boundary of the ergosphere

r0+ = 2M . The radius ra is also plotted (see text). The dots denote the critical points of the potential.

Numbers close to the dots denote the energy V/µ of the maxima and minima of the effective potential.

E ≈ 0.333M exists for r = 0.75M (see also Sec. IV C).

From the analysis of the effective potential it follows that the turning points are located

at r+lsco ≈ 9.828M where L+
lsco ≈ −4.421µM and V +

lsco ≈ 0.96µ. Moreover, in the interval

0 < r < r−lsco the orbits with angular momentum L = L− are unstable; in the interval

r−lsco < r < ra the orbits with L = L− are stable; and for ra < r < r+lsco we see that the

orbits with L = L− are stable and those with L = −L+ are unstable. Finally, in the range

r > r+lsco, the orbits with L = −L+ and L = L− are both stable.

2. The region a
M ∈ ]9,+∞[

In the second region ( a & 9M) which is characterized by

ra < r̄lsco < r+lsco , (36)

there are unstable orbits with angular momentum L = L− in the interval 0 < r < ra and

with L = L− and L = −L+ in the interval ra < r < r̄lsco. Moreover, for r̄lsco < r < r+lsco

there are stable orbits with L = L− and unstable ones with L = −L+. Finally, for r > r+lsco

there are stable orbits with both L = L− and L = −L+. In Fig. 21 a schematic summary

of this case is presented.
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FIG. 21: Orbits stability in a Kerr naked singularity with a & 9M . The radii rlsco of the last stable circular

orbits are plotted as functions of the intrinsic angular momentum a/M . The radius r = ra is also plotted.
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FIG. 22: The angular momentum and the energy of circular orbits in a Kerr naked singularity with a = 2M ,

as functions of the radial distance r/M . The dotted dashed gray line represents the outer boundary of the

ergosphere r0+ = 2M . The dots denote the position of the last stable circular orbits, and the numbers close

to the dots indicate the value of the corresponding energy V/µ or angular momentum L/(Mµ). In the range

r > ra ≈ 4.822M there exist circular orbits with L = −L+, and in r > 0 with L = L− (see text).

As a concrete example of this case we now analyze the circular motion of test parti-

cles around a naked singularity with a = 2M . In this case, circular orbits with angular

momentum L = L− exist in the entire range r > 0, and with L = −L+ in the range

r > ra ≈ 4.822M . The energy and the angular momentum of the circular orbits are plotted

in Figs. 22.

In Fig. 23, the effective potential of circular orbits is plotted for selected values of the

orbital angular momentum in terms of the radial distance. The turning points of the effective

potential are r+lsco ≈ 11.702M for which L+
lsco ≈ −4.814µM and V +

lsco ≈ 0.971µ, and r−lsco ≈

1.263M with L−lsco ≈ 0.645µM and V −lsco ≈ 0.687µ.

The distribution of circular orbits is as follows: In the interval 0 < r < r̄lsco there

exist unstable orbits with L = L− which become stable for r̄lsco < r < ra; in the interval

ra < r < r+lsco the orbits with L = L− are stable while those with L = −L+ are unstable. In

the outer region r > r+lsco orbits with L = −L+ and L = L− are both stable. To illustrate
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FIG. 23: The effective potential of a naked singularity with a = 2M for fixed values of the particle angular

momentum L/(Mµ). The radius ra is also plotted (see text). The dotted dashed gray line represents the

outer boundary of the ergosphere r0+ = 2M . The dots represent the critical points of the potential. Numbers

close to the dots indicate the energy V/µ of the maxima and minima of the effective potential.

the results of the analysis of this case, we consider in the region r > r0+ the model of an

accretion disk made of stable particles moving on circular orbits around the central naked

singularity. We find an accretion disk composed of an interior disk contained within the

radii [r̄lsco, r
+
lsco] in which stable particles with angular momentum L = L− co-rotate with

the central singularity. A second disk is located at r > r+lsco and contains co-rotating particles

with angular momentum L = L− and counter-rotating particles with L = −L+. We see that

the structure of this accretion disk is similar to that found in Sec. III for black holes. The

only difference is that in the case of a naked singularity the interior disk situated within the

radii [r̄lsco, r
+
lsco] has a minimum size of r+lsco− r̄lsco > 8M , whereas in the case of a black hole

the size of the inner disk is always less than 8M and disappears as a→ 0.

B. The case M < a < (3
√

3/4)M

For this range of values of the intrinsic angular momentum of the naked singularity we

find that there are circular orbits with angular momentum L = −L+ and energy E(−L+)

only in the region r > ra. In Fig. 24 we present the parameters for the circular orbits.

From the expression for the effective potential and the conditions for circular motion it

follows that in this case two additional regions arise. Indeed, in the intervals 0 < r < r̂−
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FIG. 24: Circular motion around a naked singularity with M < a < (3
√

3/4)M . The angular momentum

L = −L+ (left plot) and the energy E
(−)
+ ≡ E(−L+) (right plot) for circular orbits are plotted as functions

of a in the range 1 < a/M < 3
√

3/4 and r in the range r > ra. The particle energy is always positive with

a region of minima corresponding to the minima of −L+.

and r ≥ r̂+ there exist circular orbits with angular momentum L = L− and energy E(L−)

(see Fig. 25). Moreover, in the interval r̂− < r < r̂+ we observe circular orbits with angular

momentum L = −L− and energy E(−L−) (see Fig. 26), where

r̂± ≡
1√
6

Σ±

√
6
√

6a2M

Σ
− Σ2 − 6a2

 , (37)

with

Σ =

√
4a4

σ1/3
+ σ1/3 − 2a2, (38)

and

σ =
(

27M2a4 − 8a6 + 3M
√

81M2a8 − 48a10
)
. (39)

The behavior of these special radii is illustrated in Fig. 27.

Notice that the energy of circular orbits E(−L+) in the interval 0 < r < r̂− and in r ≥ r̂+

(see Fig. 28), and the energy E(L−) in the interval r > ra are always positive (see Fig. 29).

On the contrary, the energy E(−L−) of circular orbits within the region r̂− < r < r̂+ can

be negative. In particular, we see that E(−L−) = 0 for a = ā, where

ā ≡ −(r − 2M)

√
r

M
, (40)
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FIG. 25: Circular motion around a naked singularity with M < a < (3
√

3/4)M . The angular momentum

L = L− (left plot) and the energy E− ≡ E(L−) (right plot) of circular orbits are plotted as functions

of of a in the range 1 < a/M < 3
√

3/4 and r in the intervals r > r̂+ and 0 < r < r̂−. The region

r̂− < r < r̂+ is represented as a dark region. As r/M approaches the singularity, the particle energy and

angular momentum diverge. As r/M approaches r̂− from the left and r̂+ from the right, the particle energy

and angular momentum decrease.

FIG. 26: Circular motion around a naked singularity with M < a < (3
√

3/4)M . The angular momentum

L = −L− (left plot) and the energy E−− ≡ E(−L−) (right plot) of circular orbits are plotted as functions of

of a in the range 1 < a/M < 3
√

3/4 and of r in the interval r̂− < r < r̂+. The black curves represent the

radii r̂− and r̂+. The presence of negative values for the particle energy is evident.
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FIG. 27: The radii ra and r̂± are plotted as functions of a/M . Circular orbits with angular momentum

L = −L+ exist for r > ra , with L = L− in 0 < r < r̂− and r ≥ r̂+, and with L = −L− in r̂− < r < r̂+ (see

text). The dotted dashed gray line represents the outer boundary of the ergosphere r0+ = 2M .
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FIG. 28: The energy E(L−) of test particles is plotted for selected values of a in the range M < a <

(3
√

3/4)M and for r > r̂+ and 0 < r < r̂−.
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3/4)M and

for r > ra. The energy E(−L+) is always strictly positive and increases as the angular momentum a/M

increases.

or for the orbital radii r = r̄1 and r = r̄2, where

r̄1
M
≡ 8

3
sin

(
1

6
arccos

[
1− 27a2

16M2

])2

, (41)

and
r̄2
M
≡ 4

3

(
1 + sin

[
1

3
arcsin

[
1− 27a2

16M2

]])
, (42)

which are the solutions of the equation a = ā.

We can see that E(−L−) < 0 for M < a <
√

32/27M in the interval r̄1 < r < r̄2.

Otherwise, for a >
√

32/27M , the energy E(−L−) is always strictly positive. This behavior

is illustrated in Fig. 30.

The stability of circular orbits is determined by the turning points of the effective poten-

tial. For this case we find numerically two turning points r+lsco and r̃−lsco with r̂− < r̃−lsco < r̂+

and r+lsco > ra (see Fig. 31), where

r̃−lsco ≡ 3− Z2 −
√

(3− Z1)(3 + Z1 − 2Z2) . (43)

The radii r+lsco and r̃−lsco correspond to the last stable circular orbits with angular L = −L+

and L = −L− respectively. Then, the distribution of circular orbits in the different regions

is as follows:
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FIG. 30: The angular momentum ā = −(r−2M)
√
r/M is plotted as a function of r. The energy vanishes,

E(−L−) = 0, for a = ā, and is negative, E(−L−) < 0, for 1 < a <
√

32/27M in the interval r̄1 < r < r̄2.

For a >
√

32/27M the energy E(−L−) is always strictly positive. For a naked singularity with momentum

a = 1.02M the energy E(−L−) = 0 at r = 0.41M and r = 0.96M , and E(−L−) < 0 in 0.41M < r < 0.96M .

For a =
√

32/27M the energy E(−L−) = 0 at r = 2/3M , whereas E(−L−) > 0 for a = 1.1M . In the upper

bottom plot, the energy E(−L−) is plotted for selected values of a/M in the interval r̂− < r < r̂+.

32



1.00 1.05 1.10 1.15 1.20 1.25 1.30
0

2

4

6

8

10

a�M

r l
sc

o
�M

rlsco- H-L-
L

r
`

+

r+
0

ra

r
`

-

rlsco+ H-L+
L

FIG. 31: The radii r±lsco of the last stable circular orbits are plotted as functions of the intrinsic angular

momentum a in the interval M < a < 3
√
3

4 M . The radii ra and r̂± are also plotted. The particle angular

momentum L± is also denoted for some particular radii.

• In the region 0 < r < r̂−, the orbits with L = L− are unstable.

• In the region r̂− < r < r̃−lsco, the orbits with L = −L− are unstable.

• In the region r̃−lsco < r < r̂+, the orbits with L = −L− are stable.

• In the region r̂+ < r < ra, the orbits with L = L− are stable.

• In the region ra < r < r+lsco, the orbits with L = −L+ are unstable and those with

L = L− are stable.

• In the region r > r+lsco, the orbits with L = −L+ and L = L− are stable.

The summary of this case is sketched in Fig. 32. As a concrete example, we investigate in

detail circular motion around a naked singularity with a = 1.1M . The radii that determine

the distribution of test particles in this gravitational field are: r̂− ≈ 0.378M , r̃−lsco ≈ 0.989M ,

r̂+ =≈ 0.989M , ra ≈ 4.088M , and r+lsco =≈ 9.280M . In Fig. 33, we illustrate the behavior

of the angular momentum and the energy of circular orbits for this special case.

In Fig. 34, we show the behavior of the effective potential for some selected values of

the orbital angular momentum. The turning points of the effective potential are located at
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FIG. 33: Angular momentum and energy of circular orbits in a Kerr naked singularity with a = 1.1M . The

dots denote the position of the last stable circular orbits, and the numbers close to the dots indicate the

value of the energy V/µ or the angular momentum of the last stable circular orbits. In r > ra ≈ 4.088M ,

the particles have angular momentum L = −L+; in 0 < r < r̂− ≈ 0.378M and r ≥ r̂+ ≈ 0.989M , there

exist particles with L = L−; in r̂− < r < r̂+, there exist particles with L = −L−.
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FIG. 34: The effective potential of a naked singularity with a = 1.1M for fixed values of the particle

angular momentum L/(Mµ). The radii ra and r̂± are also plotted. The dots denote the critical points of

the potential. Numbers close to the dots indicate the energy V/µ of the maxima and minima of the effective

potential. The dotted dashed gray line represents the outer boundary of the ergosphere r0+ = 2M .

r+lsco ≈ 9.280M , where L+
lsco ≈ −4.298µM and V +

lsco ≈ 0.963µ, and at r̃−lsco ≈ 0.667M , where

L−lsco ≈ −0.354µM and V −lsco ≈ 0.028µ.

The essential results of our analysis can be described by using the model of an accretion

disk around the central naked singularity. Considering the properties and positions of the

different radii and the positions of the last stable circular orbits, we conclude that the

stable accretion disk is composed of three different disks. The internal disk is situated
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between the radii r̃−lsco and r̂+ and is made of stable particles of counter-rotating particles

with angular momentum L = −L−. Particles situated on the boundary radius r̂+ turn out

to be characterized by a zero value of the angular momentum (cf. Sec. IV C). A second

disk made of stable corotating particles with angular momentum L = L− is situated in the

region r̂+ < r < r+lsco. Finally, the exterior stable disk is situated in the region r > r+lsco and

contains corotating particles with L = L− and counter-rotating particles with L = −L+.
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FIG. 35: The effective potential of a Kerr naked singularity with angular momentum parameter a = 1.1M

and and a = 2M is plotted for the particle orbital angular momentum L/(Mµ) = 0 as a function of the

radius r/M . The radii ra and r̂± are also plotted for both cases (see text). The dots represent the critical

points of the potential, and the numbers close to the dots indicate the energy V/µ of the maxima and

minima of the effective potential. In the case a = 2M no extreme points are observed in the potential.

C. Orbits with zero angular momentum

An interesting phenomenon that occurs only in the gravitational field of naked singularity

is the existence of “circular orbits” with zero angular momentum, as defined by the conditions

V = E/µ, V ′(r) = 0, L = 0 . (44)

This fact can be interpreted as a consequence of the repulsive gravity effects that characterize

the dynamics in the field of the naked singularity. For the repulsive gravity effects in the

Kerr spacetime see, for example, [39, 40]. From the expression for the angular momentum

derived in Sec. II one can show that the solution (44) is allowed only for naked singularities

with intrinsic angular momentum within the interval 1 < a/M ≤ 3
√

3/4. Outside this

interval, i.e. for a/M > 3
√

3/4, no orbits exist with zero angular momentum. The behavior

of the corresponding effective potential is illustrated in Fig. 35.

A further analysis shows that the particles with L = 0 are situated on the radii r̂±, and

that the radius r̂− corresponds to unstable particles while the radius r̂+ is withing the region

of stability. This situation is illustrated in Fig. 36.

The analysis of the energy of test particles with L = 0 is presented in Fig. 37. For the

stable particles that are situated on the radius r̂+ we can note that the energy is always
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FIG. 36: Location of particles with L = 0 in a Kerr naked singularity with 1 < a/M ≤ 3
√

3/4. The

picture plots the locus of the critical points of the effective potential V/µ with (particle) angular momentum

L/(Mµ) = 0. The radius of these “circular” orbits is plotted as a function of the source angular momentum

a/M . Numbers close to the dots indicate the value of the energy V/µ.

positive and finite. The maximum value of the energy is reached at the ratio a/M = 3
√

3/4

and the minimum value with E(r̂+)→ 0 corresponds to the limit of the extreme black hole

a/M → 1.
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3/4. The orbits are

located on the radii r = r̂+ (stable) and r = r̂− (unstable). The energies E(r̂+) (black curve) and E(r̂−)

(gray curve) are plotted as functions of the intrinsic angular momentum a/M . It is possible to see that

E(r̂+) < E(r̂−) for 1 < a/M < 3
√

3/4, and E(r̂+) = E(r̂−) for a/M = 3
√

3/4.
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outer boundary of the ergosphere r0+ = 2M .

D. Summary of the naked singularity and black hole cases

In the investigation of the circular motion of test particles around a Kerr naked singularity

we found that it is necessary to analyze separately the two regions a ≥ 3
√
3

4
M and M < a <

3
√
3

4
M . The distribution of orbits depends on the position of the special radii r̂±, given by

Eq. (37), ra, given by Eq. (33), and the position of the last stable circular orbits r+lsco, as

given in Eq.(28), r̃−lsco in Eq. (43) and r̄lsco, as given in Eq.(34). Notice that although the

radius r̄lsco is the geometric continuation of the radius r̃−lsco for the interval a/M > 3
√

3/4,

their values are determined by different analytical expressions as follows from Eqs.(28) and

(34). The arrangement of these radii in the interval 1 < a/M < 1.7 is depicted in Fig. 38.

The tables II and III summarize the distribution and stability properties of test particles

in circular motion in the field of a rotating naked singularity for the two different regions of

values of the intrinsic angular momentum.

For the sake of completeness, we show in Fig. 39 the behavior of the energies E+
lsco =

E(r+lsco) and E−lsco = E(r−lsco) and angular momenta L+
lsco = L(r+lsco) and L−lsco = L(r−lsco), for

the last stable circular orbits in terms of the ratio a/M of the naked singularity. Notice that,

as expected from a physical viewpoint, for a fixed value of the ratio a/M the energy of the
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Case: M < a < (3
√

3/4)M

Region Angular momentum Stability

]0, r̂−[ L− r̃lsco

]r̂−, r̂+[ −L− r̃lsco

]r̂+,∞[ L− r̃lsco

]ra,∞[ −L+ r+lsco

]0, r̂−[ L− Unstable

]r̂−, r̃lsco[ −L− Unstable

]r̃lsco, r̂+[ −L− Stable

]r̂+, ra[ L− Stable

]ra, r
+
lsco[ L− (−L+) Stable (Unstable)

]r+lsco,∞[ (L−, −L+) Stable

TABLE II: Distribution and stability properties of circular orbits for a test particle in a Kerr naked

singularity with M < a < (3
√

3/4)M . For each region we present the value of the orbital angular momentum

of the particle as determined by Eq. (15).

exterior last stable circular orbit E(r+lsco) is always smaller than the corresponding energy of

the interior particle E(r−lsco).

Our analysis of Kerr black holes and naked singularities shows that the properties of

circular orbits depend strongly on their radial distance with respect to the central source.

The critical radii that are found in the analysis of the conditions for circular motion deter-

mine the angular momentum and the energy of the test particles. The arrangement of those

special radii and the positions of the last stable circular orbits is depicted in Fig. 40 for the

relevant ranges of the ratio a/M .

The radii ra, rγ, r̂+, and r̂− determine the angular momentum and direction of rotation

of test particles at a given distance from the central source. In addition, the radii r±lsco

determine the position of the last stable circular orbits with a given angular momentum of

the test particle.

If we imagine an infinitesimal thin disk made of test particles in circular orbits around the

central compact object, the above results show that the geometric structure of the disk is
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Case: a ≥ (3
√

3/4)M

Region Angular momentum Stability

]0,∞[ L− r̄lsco

]ra,∞[ −L+ r+lsco

(3
√

3/4)M < a < 9M (r̄lsco < ra < r+lsco)

]0, r̄lsco[ L− Unstable

]r̄lsco, ra[ L− Stable

]ra, r
+
lsco[ L− (−L+) Stable (Unstable)

]r+lsco,∞[ (L−, −L+) Stable

a ≥ 9M (ra < r̄lsco < r+lsco)

]0, ra[ L− Unstable

]ra, r̄lsco[ (L−,−L+) Unstable

]r̄lsco, r
+
lsco[ L− (−L+) Stable (Unstable)

]r+lsco,∞[ (L−, −L+) Stable

TABLE III: Distribution and stability properties of circular orbits for a test particle in a Kerr naked

singularity with a ≥ (3
√

3/4)M . For each region we present the value of the orbital angular momentum of

the particle as determined by Eq. (15).
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of the intrinsic angular momentum of the naked singularity.
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FIG. 40: Arrangement of the radii determining the properties of circular orbits around a rotating central

mass. The upper plot is for black holes and naked singularities with intrinsic angular momentum a/M ∈

[0, 1.7]. The bottom plot is for rotating naked singularities with a/M ∈ [1.7, 14]. The dotted dashed gray

line represents the outer boundary of the ergosphere r0+ = 2M .

sufficient to distinguish between black holes and naked singularities. For such hypothetical

disk to be a meaningful approximation of a physically realizable disk, it is necessary that the

individual particle orbits be stable with respect to infinitesimal perturbations. In the case of
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radial perturbations, stability is guaranteed as a consequence of the fact that the disk is made

of stable particles in circular motion, as described above. As for perturbations out of the

equatorial plane, the analysis of stability has been performed by using the geodesic equations

[41], the phase space method [42], and the Rayleigh criterion [43, 44]. Although the last

method has been applied only to static central sources, the generalization to include rotating

sources seems to be straightforward. All those methods show that equatorial circular orbits

around a Kerr black hole are stable under out-of-equatorial-plane perturbations as long as

the angular momentum per unit mass of the test particles increases monotonically as the

distance to the axis of symmetry increases. A complementary analysis must be performed in

the case of naked singularities; however, a brief inspection of the analytical results obtained

by using the phase space method seems to indicate that the stability does not depend

drastically on the mass-to-angular-momentum ratio of the central body. In general, one can

expect that the stability with respect to radial and out-of-equatorial-plane perturbations

depends on the ratio of source rotation to particle angular momentum.

V. CONCLUSIONS

In this work, we investigated the circular motion of test particles around a rotating central

mass whose gravitational field is described by the Kerr spacetime. We limit ourselves to

the study of circular orbits situated on the equatorial plane θ = π/2. First, we derive

the conditions for the existence of circular orbits by using the fact the geodesic motion in

this case can be reduced to the motion of test particles in an effective potential. In this

procedure, two constants of motion arise, E and L, which are interpreted as the energy and

the angular momentum of the test particles, respectively. We concentrate on the analysis

of the conditions for the existence of circular orbits and their consequences for the values

of the energy and angular momentum of the test particles. Our analysis covers completely

the range of values of the intrinsic angular momentum of the central mass, including black

holes and naked singularities. We find all the regions of the equatorial plane where circular

motion is allowed and analyze the behavior of the energy and the angular momentum of the

test particles in those regions. Moreover, the stability properties of all the allowed circular

orbits was investigated in detail.

For our analysis we consider separately the case of black holes with ratio a/M ≤ 1 and
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naked singularities a/M > 1, where M is the mass and a is the specific angular momentum

J/M of the central body. Moreover, in the case of naked singularities it turns out that the

physical properties of the circular motion depend on the value of the ratio a/M so that it

is necessary to explore two different ranges: 1 < a/M < 3
√

3/4 and a/M > 3
√

3/4. The

essential part of our results can be formulated in a plausible manner by using the model of

an accretion disk made of stable test particles which are rotating around the central mass.

In the case of a black hole (a/M ≤ 1), we find that the accretion disk is composed of an

interior disk situated within the radii [r−lsco, r
+
lsco] and an exterior disk in the region r > r+lsco,

where r±lsco represent the radius of the last stable circular orbit with angular momentum

L = ∓L±; moreover, the value of L± depends on the radius r of the circular orbit and on

the ratio a/M of the central body [cf. Eq.(15)]. A similar accretion disk is found around

naked singularities with a/M > 3
√

3/4. The only difference is that in the case of a naked

singularity the interior disk, situated within the radii [r̄−lsco, r
+
lsco], has a minimum size of

r+lsco− r̄
−
lsco > 8M , whereas in the case of a black hole the size of the inner disk is always less

than 8M and disappears as a→ 0.

For naked singularities in the range 1 < a/M ≤ 3
√

3/4 we find that the stable accretion

disk is composed of three different disks. The internal disk is situated between the radii

r̃−lsco and r̂+ < r+lsco and is made of stable counter-rotating particles with angular momentum

L = −L−. The radius r̂+ corresponds to circular orbits with zero angular momentum

(V = E/µ, V ′(r) = 0, L = 0). A second disk made of stable corotating particles with

angular momentum L = L− is situated in the region r̂+ < r < r+lsco. Finally, the exterior

stable disk is situated in the region r > r+lsco and contains corotating particles with L = L−

and counter-rotating particles with L = −L+. We conclude that the main difference between

a rotating black hole and a rotating naked singularity consists in the different geometric

structure of their accretion disks.

The study of the dynamics of test particles around compact rotating objects is surely

interesting from the point of view of the astrophysical phenomenology. However, an imme-

diate application of this study will be in the physics of the accretion disks as observed around

astrophysical rotating objects (see [45–47] and also [39, 48–50], for the problem concerning

the extended theories of gravity see for example [51]). The matter constituents, plasma

elements, are the material of the electromagnetic jets as seen in the X–rays and γ–ray emis-

sions. In this respect, a detailed and proper description of the test particle dynamics is
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the first step towards the construction of a realistic model for accretion disks around Kerr

sources (see [39, 52–54], and also [55] and [56]) .

In this work, we also explored the physics of naked singularities (see also [10–12, 57]). As

no naked singularity has been yet observed and furthermore the existence of these objects is

still a subject under intensive theoretical debate, the analysis of the dynamical properties of

these objects is clearly important either for a formalization of a complete theoretical picture

of the physical features of these solutions, or for observational issues [58, 59], [60–63] see

also [64, 65]. We expect to generalize this work to include the physical contribution of a

charged source, therefore, exploring the Kerr–Newman metric which properly describes the

spacetime of a rotating, electrically charged, compact object in general relativity [14].
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