Uniform Acceleration

We seek the solution to the problem of constant proper acceleration, ag, where A? = ag. It will
be convenient to define the parameter o = ag/c, which has the units of inverse time. In the case

of motion along the z-axis, the 4-vectors reduce to two component vectors:
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A bit of algebra gives us separate expressions for § and « as functions of time:
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If we choose xg = ¢/a, the result is particularly simple:
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(While this choice of xy makes for nice equations, it typically results in an origin rather far from
the object. For example, if ag = g, x¢ is nearly a light year.)

Since the lhs is an invariant form, we immediately know the form of this equation in boosted
frames S’. Additionally note that & = c?t/x for any . Thus regardless of «, such hyperbolic
objects crossing the line ¢t/x = constant share a common speed. If we boost to that frame, we
find the line ¢/x = constant is the line ¢ = 0. Because of the invariant form, objects on this line
must also have 2/ = z¢ and ' = 0. Thus if we look at a collection of hyperbolic objects (each
with differing 2y and hence differing «), in any standard boosted frame S, at t' = 0 we will find
the objects at rest with exactly the same z’ as they had in the initial frame. This provides the
best possible example of a ‘rigid’, accelerating body.
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The dotted lines denote hyper-
bolic motion of the form:
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There are nice expressions for this motion in terms of proper time (i.e., time measured with a
clock that moves with the object, and hence subject to time dilation).
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