
5: Langmuir’s Probe

Purpose

The purpose of this lab is to measure some basic properties of plasmas: electron tempera-
ture, number density and plasma potential.

Introduction

When you think of electrical conductors, you probably think first of metals. In metals the
valence electrons are not bound to particular nuclei, rather they are free to move through
the solid and thus conduct an electrical current. However, by far the most common electrical
conductors in the Universe are plasmas: a term first applied to hot ionized gases by Irving
Langmuir (see below). In conditions rare on the surface of the Earth but common in the
Universe as a whole, “high” temperatures1 provide enough energy to eject electrons from
atoms. Thus a plasma consists of a gas of freely flying electrons, ions, and yet unionized
atoms. It should come as no surprise that during the extraordinary conditions of the Big
Bang, all the matter in the Universe was ionized. About 380,000 years after the Big Bang,
the Universe cooled enough for the first atoms to form. Surprisingly about 400 million years
after that the Universe was re-ionized, and the vast majority of the matter in the universe
remains ionized today (13.7 billion years after the Big Bang). Some of this ionized matter
is at high density (hydrogen gas more dense than lead) and extremely high temperature at
the center of stars, but most of it is believed to be at extremely low density in the vast
spaces between the galaxies.

Perhaps the most obvious characteristic of conductors (metals and plasmas) is that they
are shiny; that is, they reflect light. A moment’s thought should convince you that this is

1What does “high temperature” mean? When you are attempting to make a Bose condensation at less
than a millionth of a degree, liquid helium at 4 K would be called hot. When you are calculating conditions
a few minutes after the Big Bang, a temperature of a billion degrees Kelvin would be called cool. An
important insight: Nothing that has units can be said to be big or small! Things that have units need to
be compared to a “normal state” before they can be declared big or small. Here the normal state refers to
conditions allowing normal solids and liquids to exist. Tungsten, which is commonly used in the filaments of
light bulbs, melts at about 3700 K; Carbon does a bit better: 3800 K. The “surface” of the Sun at 6000 K
has no solid bits. At temperatures of about 5000 K most molecules have decomposed into elements which
in turn have partially “ionized”: ejecting one or more electrons to leave a positively charged core (an ion)
and free electrons. I’ll pick 5000 K as my comparison point for “hot”, but of course some elements (e.g.,
sodium) begin to ionize a lower temperatures, and others (e.g., helium) ionize at higher temperatures. The
key factor determining the ionized fraction in the Saha equation is the “first ionization energy”.
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not an “all-or-nothing” property. While metals reflect radio waves (see satellite TV dishes),
microwaves (see the inside of your microwave) and visible light, they do not reflect higher
frequency light like X-rays (lead, not aluminum, for X-ray protection). The free electron
number density (units: number of free electrons/m3), ne, determines the behavior of light
in a plasma. (Almost always plasmas are electrically neutral; i.e., the net electric charge
density ρ is near zero. If the atoms are all singly ionized, we can conclude that the ion
number density, ni, equals ne. In this lab we will be dealing with partially ionized argon
with a neutral atom density nn ≫ ne ≈ ni.) The free electron number density determines
the plasma frequency, ωp:

ωp = 2πfp =

√

nee2

ǫ0m
(5.1)

where −e is the charge on an electron and m is the mass of an electron. If light with
frequency f is aimed at a plasma: the light is reflected, if f < fp ; the light is transmit-
ted, if f > fp. Thus conductors are shiny only to light at frequencies below the plasma
frequency. In order to reflect visible light, the plasma must be quite dense. Thus metals
(ne ∼ 1028 m−3) look shiny, whereas semiconductors (ne ∼ 1024 m−3) do not. The plasma
at “surface” of the Sun (with ionized fraction less than 0.1% and ne ∼ 1020 m−3) would
also not look shiny. You will find the plasma used in this lab has even lower ne; it will look
transparent.

The defining characteristic of conductors (metals and plasmas) is that they can conduct an
electric current. Since conductors conduct, they are usually at a nearly constant potential
(voltage). (If potential differences exist, the resulting electric field will automatically direct
current flow to erase the charge imbalance giving rise to the potential difference.) At
first thought this combination (big current flow with nearly zero potential difference) may
sound odd, but it is exactly what small resistance suggests. In fact the detection of big
currents (through the magnetic field produced) first lead to the suggestion2 of a conductor
surrounding the Earth—an ionosphere. Edward Appleton (1924) confirmed the existence
and location of this plasma layer by bouncing radio waves (supplied by a B.B.C. transmitter)
off of it. In effect the ionosphere was the first object detected by radar. Appleton’s early
work with radar is credited with allowing development of radar in England just in time
for the 1941 Battle of Britain. Appleton received the Nobel prize for his discovery of the
ionosphere in 1947. (Much the same work was completed in this country just a bit later by
Breit & Tuve.)

The plasma frequency in the ionosphere is around 3–10 MHz (corresponding to ne ∼
1011–1012 m−3). Thus AM radio (at 1 MHz) can bounce to great distances, whereas CB
radio (at 27 MHz) and FM (at 100 MHz) are limited to line-of-sight. (And of course
when you look straight up you don’t see yourself reflected in the ionospheric mirror, as
flight ∼ 5× 1014 Hz. On the other hand, extra terrestrials might listen to FM and TV, but
we don’t have to worry about them listening to AM radio.) The actual situation is a bit
more complex. In the lowest layer of the ionosphere (D region), the fractional ionization
is so low that AM radio is more absorbed than reflected. Sunlight powers the creation of
new ions in the ionosphere, so when the Sun does down, ionization stops but recombination
continues. In neutral-oxygen-rich plasmas like the D region, the plasma disappears without
sunlight. Higher up in the ionosphere (the F region, where ne is higher and nn lower) total

2Faraday (1832), Gauss (1839), Kelvin (1860) all had ideas along this line, but the hypothesis is usually
identified with the Scot Balfour Stewart (1882).
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recombination takes much more than 12 hours, so the plasma persists through the night.
Thus AM radio gets big bounces only at night.

I have located a plasma (a hot ionized gas) high in the Earth’s atmosphere, yet folks climb-
ing Mt. Everest think it’s cold high up in the Earth’s atmosphere. First, the ionosphere
starts roughly 10 times higher than Mt. Everest, and in the F Region (about 200 km up)
“temperature” is approaching 1000 K, warm by human standards if not by plasma stan-
dards. But the electrons are hotter still. . . up to three times hotter (still not quite hot by
plasma standards). This is an odd thought: in an intimate mixture of electrons, ions, and
neutral atoms, each has a different temperature. As you know, in a gas at equilibrium the
particles (of mass M) have a particular distribution of speeds (derived by Maxwell and
Boltzmann) in which the average translational kinetic energy, 〈EK〉 is determined by the
absolute temperature T :

〈EK〉 =
1

2
M 〈v2〉 =

3

2
kT (5.2)

where k is the Boltzmann constant and 〈〉 denotes the average value. Thus, in a mixture
of electrons (mass m) and ions (mass Mi) at different temperatures (say, Te > Ti), you
would typically find the electrons with more kinetic energy than the ions. (Note that even
if Te = Ti, the electrons would typically be moving much faster than the ions, as:

1

2
m 〈v2

e 〉 =
1

2
Mi 〈v2

i 〉 (5.3)

ve

∣

∣

rms
=
√

〈v2
e 〉 =

√

Mi

m
vi

∣

∣

rms
(5.4)

that is the root-mean-square (rms) speed of the electrons will be
√

Mi/m ≈
√

40 · 1827 ≈
270 times the rms speed of the Argon ions, in the case of an 40Ar plasma).

How can it be that the collisions between electrons and ions fail to average out the kinetic
energy and hence the temperature? Consider a hard (in-line) elastic (energy conserving)
collision between a slow moving (we’ll assume stopped, ui = 0) ion and a speeding electron
(vi).

vi ui = 0

initial
vf uf

final

We can find the final velocities (vf & uf ) by applying conservation of momentum and energy.
The quadratic equation that is energy conservation is equivalent to the linear equation of
reversal of relative velocity:

vi = uf − vf (5.5)

mvi = mvf + Muf (5.6)

with solution:

uf =
2m

m + M
vi (5.7)

You can think of the ion velocity as being built up from a sequence of these random blows.
Usually these collisions would be glancing, but as a maximum case, we can think of each
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blow as adding a velocity of ∆u = 2mvi/(m + M) in a random direction. Consider the ion
velocity vector before and after one of these successive blows:

uf = ui + ∆u (5.8)

u2
f = u2

i + (∆u)2 + 2 ui · ∆u (5.9)

Now on average the dot product term will be zero (i.e., no special direction for ∆u), so on
average the speed-squared increases by (∆u)2 at each collision. Starting from rest, after N
collisions we have:

u2
f = N (∆u)2 (5.10)

1

2
M u2

f = N
1

2
M (∆u)2 (5.11)

= N
1

2
M

[

2m

m + M
vi

]2

(5.12)

= N
4m

m + M

M

m + M

1

2
mv2

i (5.13)

Thus for argon, N ≈ 18, 000 hard collisions are required for the ion kinetic energy to build
up to the electron kinetic energy. Note that in nearly equal mass collisions (e.g., between
an argon ion and an argon atom), nearly 100% of the kinetic energy may be transferred in
one collision. Thus ions and neutral atoms are in close thermal contact; and electrons are
in close contact with each other. But there is only a slow energy transfer between electrons
and ions/atoms. In photoionization, electrons receive most of the photon’s extra energy as
kinetic energy. Slow energy transfer from the fast moving electrons heats the ions/atoms.
When the Sun goes down, the electrons cool to nearly the ion temperature.

Note that the hottest thing near you now is the glow-discharge plasma inside a fluorescent
bulb: Te > 3 × 104 K. . . hotter than the surface of the Sun, much hotter than the tungsten
filament of an incandescent light bulb. The cool surface of the bulb gives testimony to the
low plasma density (ne ∼ 1016–1017 m−3) inside the bulb. Containing this hot but rarefied
electron gas heats the tube hardly at all — when the plasma’s heat gets distributed over
hugely more particles in the glass envelope, you have a hugely reduced average energy, and
hence temperature.

Plasma People

Irving Langmuir (1881–1957)

Born in Brooklyn, New York, Langmuir earned a B.S. (1903) in metallurgical engineering
from Columbia University. As was common in those days, he went to Europe for advanced
training and completed a Ph.D. (1906) in physical chemistry under Nobel laureate Walther
Nernst at University of Göttingen in Germany. Langmuir returned to this country, taking
the job of a college chemistry teacher at Stevens Institute in Hoboken, New Jersey. Dis-
satisfied with teaching, he tried industrial research at the recently opened General Electric
Research Laboratory3 in Schenectady, New York. Langmuir’s work for G.E. involved the

3G.E. calls this lab, which opened in 1900, the “first U.S. industrial laboratory devoted to research,
innovation and technology”, but Edison’s Menlo Park “invention factory” (1876) would often claim that
honor. Bell Labs (founded 1925), with six Nobel prizes in physics, would probably claim to be the world’s
preeminent industrial research lab, but the break up of the “Ma Bell” monoploy has also reduced Bell Labs.
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then fledgling4 electric power industry. He begin with improving the performance of incan-
descent electric light bulb. (Langmuir is in the inventors hall of fame for patent number
1,180,159: the modern gas-filled tungsten-filament incandescent electric light.) His work
with hot filaments naturally led to thermionic emission and improvements in the vacuum
triode tube that had been invented by Lee de Forest5 in 1906. Working with glow discharge
tubes (think of a neon sign), he invented diagnostic tools like the Langmuir probe to in-
vestigate the resulting “plasma” (a word he coined). “Langmuir waves” were discovered in
the plasma. Along the way he invented the mercury diffusion pump. In high vacuum, thin
films can be adsorbed and studied. As he said in his 1932 Nobel prize lecture:

When I first began to work in 1909 in an industrial research laboratory, I
found that the high-vacuum technique which had been developed in incandescent
lamp factories, especially after the introduction of the tungsten filament lamp,
was far more advanced than that which had been used in university laboratories.
This new technique seemed to open up wonderful opportunities for the study of
chemical reactions on surfaces and of the physical properties of surfaces under
well-defined conditions.

In 1946, Langmuir developed the idea of cloud seeding, which brought him into contact with
meteorologist Bernard Vonnegut, brother of my favorite author Kurt Vonnegut. That’s how
Langmuir became the model for Dr. Felix Hoenikker, creator of “ice-nine” in the novel Cat’s

Cradle. In fact Langmuir created the ice-nine idea (a super-stable form of solid water, with
resulting high melting point, never seen in nature for want of a seed crystal) for H.G. Wells
who was visiting the G.E. lab.

Lyman Spitzer, Jr (1914–1997)

Lyman Spitzer was born in Toledo, Ohio, and completed his B.A. in physics from Yale in
1935. For a year he studied with Sir Arthur Eddington at Cambridge, but that did not
work out so he returned to this country and entered Princeton. He completed his Ph.D. in
1938 under Henry Norris Russell, the dean of American astrophysics. Following war work
on sonar, he returned to astrophysics. His 1946 proposal for a large space telescope earned
him the title “Father of the Hubble Space Telescope”.

Because of the bend in The Curve of Blinding Energy6, the lowest energy nuclei are of
middle mass (e.g., 56Fe). Thus nuclear energy can be released by breaking apart big nuclei
(like 235Ur and 239Pu): fission as in the mis-named atomic bomb or by combining small
nuclei (like 2H deuterium and 3H tritium): fusion as in the hydrogen bomb. In 1943 Edward
Teller and Stanislaw Ulam started theoretical work on bombs based on thermonuclear fusion
then called “super” bombs. The end of WWII slowed all bomb work, but the explosion of
the first Russian atomic bomb, “Joe 1”, in 1949, rekindled U.S. bomb work. This history of
renewed interest in H-bomb work is mixed up with Russian espionage—real and imagined,

4Although not germane to my topic, I can’t resist mentioning the famous AC (with Tesla and Westing-
house) vs. DC (with Edison, J.P. Morgan, and G.E.) power wars just before the turn of the century. The
battle had a variety of bizarre twists, e.g., each side inventing an electric chair based on the opposite power
source aiming to prove that the opponent’s source was more dangerous than theirs. Easy voltage transfor-
mation with AC guaranteed the victory we see today in every electrical outlet worldwide. Unfortunately
the AC frequency did not get standardized so its 60 Hz here and 50 Hz in Europe.

51873–1961; “Father of Radio”, born Council Bluffs, Iowa, B.S & Ph.D. in engineering from Yale
6Title of an interesting book by John McPhee; ISBN: 0374515980; UF767 .M215 1974
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“McCarthyism”, and the removal of Robert Oppenheimer’s7 security clearance in 1954.8

Our piece of the fusion story starts with Spitzer’s 1951 visit with John Wheeler9 in Los
Alamos at just the right moment. The building of the Super, in response to Joe 1, had been
failing: difficult calculations showed model designs would not ignite. Energy lost by thermal
radiation and expansion cooled the “bomb” faster than nuclear energy was released.10 But
just before Spitzer arrived, Ulam and Teller had come up with a new method (radiation
coupling for fuel compression) that Oppenheimer called “technically sweet”. Meanwhile, in
a story Hollywood would love, Argentine president Juan Perón announced that his protegé,
Ronald Richter an Austrian-German chemist, working in a secret island laboratory had
achieved controlled fusion. The story (of course) fell apart in less than a year, but it
got both Spitzer and funding agencies interested. Spitzer’s idea (the “Stellarator”) was a
magnetically confined plasma that would slowly fuse hydrogen to helium, releasing nuclear
energy to heat steam and turn electrical generators. Spitzer and Wheeler hatched a plan
to return to Princeton with a bit of both projects (of course funded by the government11):
Project Matterhorn B would work on bombs and Project Matterhorn S would work on
stellarators. Matterhorn B made calculations for the thermonuclear stage of the test shot
Mike (1 Nov 1952)—the first H-bomb. The device worked even better than they had
calculated.

From 1951 until 1958 stellarator research was classified. Optimistic projections12 for fusion
reactors were believed by all—after all physicists had completed key projects (atomic bomb,
radar, H-bomb) like clockwork. Why should controlled fusion be much different from the
carefully calculated fusion of an H-bomb? Early hints of fusion success (neutron emission)
turned out to be signs of failure: “instabilities” or disturbances that grew uncontrollably
in the plasma. Turbulence—the intractable problem in hydrodynamics13 from the 19th

century—came back to bite physics in the 1950s. Instead of the hoped-for “quiescent”
plasma, experiment found large amplitude waves: a thrashing plasma that easily escaped
the magnetic field configurations physicists had thought should confine it. In 1961 Spitzer
turned directorship of the Princeton Plasma Physics Laboratory (PPPL) over to Melvin
Gottlieb, and largely returned to astrophysical plasmas.

7J. Robert Oppenheimer (1904–1967): born New York, NY, Ph.D. (1927) Göttingen. Directed atomic
bomb work at Los Alamos during WWII; ‘father of the atomic bomb’.

8See: Dark Sun, by Richard Rhodes, UG1282.A8 R46 1995
9John Archibald Wheeler (1911-2008): born Jacksonville, FL, B.S.+Ph.D. (1933) Johns Hopkins, Feyn-

man’s major professor at Princeton in 1942. Famous book: Gravitation. Coined the word “black hole”.
10Curve of Binding Energy p. 64: One day, at a meeting of people who were working on the problem of

the fusion bomb, George Gamow placed a ball of cotton next to a piece of wood. He soaked the cotton with
lighter fuel. He struck a match and ignited the cotton. It flashed and burned, a little fireball. The flame
failed completely to ignite the wood which looked just as it had before—unscorched, unaffected. Gamow
passed it around. It was petrified wood. He said, “That is where we are just now in the development of the
hydrogen bomb.”

11The U.S. Atomic Energy Commission (AEC) initiated the program for magnetic fusion research under
the name Project Sherwood. In 1974 the AEC was disbanded and replaced by the Energy Research and
Development Administration (ERDA). In 1977, ERDA in turn was disbanded and its responsibilities trans-
ferred to the new Department of Energy (DOE). Since 1977, DOE has managed the magnetic fusion research
program.

12An August 1954 report on a theoretical Model D Stellarator (only Model B, with a 2” tube, had actually
been built), using assumptions that proved false, projected a power output approximately four times that
of Hoover Dam. The usual joke is that controlled fusion will always be just ten years away.

13Turbulence in hydrodynamics is one of the Clay Millennium Prize Problems (essentially Nobel + Hilbert
for mathematics in this century): 1 million dollars for a solution!
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The current focus for magnetically confined plasma research is the “tokamak”: a particular
doughnut-shape (torus) configuration that confines the plasma in part using a large current
flowing through the plasma itself. Designed by Russians Igor Tamm and Andrei Sakharov,
the T-3 Tokamak surprised the plasma physics world when results were made public in
1968. In 1969, PPPL quickly converted the C-Stellarator into the ST tokamak.

Returning to astrophysics, Spitzer’s influential books demonstrate his connection to plasma
physics: Physics of Fully Ionized Gases (1956 & 1962), Diffuse Matter in Space (1968),
Physical Processes in the Interstellar Medium (1978), and Dynamical Evolution of Globular

Clusters (1988).

Summary

Almost everywhere in time and space, plasmas predominate. While present in some natural
phenomena at the surface of the Earth (e.g., lightning), plasmas were “discovered” in glow
discharges. In the first half of the 1900s, plasma physics was honored with two Nobels14

Langmuir worked to understand “industrial” plasmas in things that are now considered
mundane like fluorescent lights. Appleton located the ionosphere: an astronomical plasma
surrounding the Earth. Both Nobels were connected to larger historical events (the rise of
radio and radar in time to stop Hitler at the English channel).

In the second half of the 1900s, plasma physics was connected unpleasant problems: pol-
itics (McCarthyism), espionage, and turbulence. While H-bombs worked as calculated,
controlled fusion proved difficult and only slow progress has been achieved. Astrophysical
plasmas (for example, around the Sun) have also proved difficult to understand.

In this century, “industrial” plasmas are again newsworthy with plasma etching for com-
puter chip manufacture and plasma display screens for HDTV.

Since the calculation of plasma properties has proved so difficult, measurements of plasma
properties (“plasma diagnostics”) are critical. In all sorts of plasmas (astrophysical, ther-
monuclear, industrial), the primary plasma diagnostic has been that first developed by
Langmuir. The purpose of this lab is to measure basic plasma properties (Te, ne) using a
Langmuir probe.

Glow Discharge Tube

In a glow (or gas) discharge tube, a large voltage (∼100 V) accelerates free electrons to
speeds sufficient to cause ionization on collision with neutral atoms. The gas in the tube is
usually at low pressure (∼1 torr), so collisions are not so frequent that the electrons fail to
reach the speed required for ionization.

Making an electrical connection to the plasma is a more complicated process than it might
seem:

A. The creation of ions requires energetic collisions (say, energy transfer ∼10 eV). Kinetic

14An additional Nobel for plasma physics: Hannes Alfvén (1970). Note that Tamm and Sakharov (named
in the context of the Tokamak) also received Nobels, but not for plasma physics work.
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Figure 5.1: When a current flows between the anode (+) and cathode (–), the gas in the tube
partially ionizes, providing electrons and ions to carry the current. The resulting plasma
is at a nearly constant potential. Electric fields (from potential differences) exist mostly
at the edge of the plasma, in the plasma sheath. The largest potential drop is near the
cathode. The resulting cathode glow is the region of plasma creation. Increased discharge
current Ic results in expanded coverage of the cathode by the cathode glow, but not much
change in the cathode voltage Vc. Note that if the anode/cathode separation were larger,
a positive column of excited gas would be created between the Faraday dark space and the
anode.

energy for the collision must in turn come from potential differences of ∼> 10 V.
However, we’ve said that conductors (like the plasma) are at approximately constant
potential. Thus ion creation must occur at the edge of the plasma.

B. It turns out that attempts to impose a potential difference on a plasma fail. Typically
potential differences propagate only a short distance, called the Debye length λD, into
the plasma:

λD =

√

ǫ0kTe

e2ne
(5.14)

Thus we expect the “edge” of the plasma to be just a few λD thick.

C. The small electron mass (compared to ions), guarantees high electron mobility in the
plasma. Thus we expect electrons to carry the bulk of the current in the plasma. But
this cannot be true in the immediate vicinity of the cathode. The electrons inside the
cold cathode (unlike the heated cathode in thermionic emission) are strongly held—
they will not spontaneously leave the cathode. Thus near the cathode the current
must be carried by ions which are attracted to the negatively charged cathode. Once
in contact with the cathode an ion can pick up an electron and float away as a neutral
atom. Note particularly that there is no such problem with conduction at the anode:
the plasma electrons are attracted to the anode and may directly enter the metal to
continue the current. Thus we expect the active part of the discharge to be directly
adjacent to the cathode.

D. If you stick a wire into a plasma, the surface of the wire will be bombarded with
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electrons, ions, and neutrals. Absent any electric forces, the impact rate per m2 is
given by

J =
1

4
n 〈v〉 =

1

4
n

√

8kT

πM
(5.15)

where n is the number density of the particles and 〈v〉 is their average speed. If
the particles follow the Maxwell-Boltzmann speed distribution, the average speed is
determined by the temperature T and mass M of the particles. (Recall: vrms =
√

3π/8 〈v〉 ≈ 1.085 〈v〉 for a Maxwell-Boltzmann distribution.) Since the electron
mass is much less than the ion mass (m ≪ Mi) and in this experiment the temper-
atures are also different (Te ≫ Ti), the average electron speed is much greater than
the average ion speed. Thus an item placed in a plasma will collect many more elec-
trons than ions, and hence will end up with a negative charge. The over-collection
of electrons will stop only when the growing negative charge (repulsive to electrons,
attractive to ions) reduces the electron current and increases the ion current so that
a balance is reached and zero net current flows to the wire. The resulting potential is
called the floating potential, Vf .

The upshot of these considerations is that objects immersed in a plasma do not actually
contact the plasma. Instead the plasma produces a “sheath”, a few Debye lengths thick, that
prevents direct contact with the plasma. We begin by demonstrating the above equations.

The starting point for both equations is the Boltzmann factor:

probability = N e−E/kT (5.16)

which reports the probability of finding a state of energy E in a system with temperature
T , where N is a normalizing factor that is determined by the requirement that the total
probability adds up to 1. The energy of an electron, the sum of kinetic and potential energy,
is

E =
1

2
mv2 − eV (5.17)

where V is the voltage at the electron’s position. (See that for an electron, a low energy
region corresponds to a high voltage region. Thus Boltzmann’s equation reports that elec-
trons are most likely found in high voltage regions.) To find N add up the probability for
all possible velocities and positions:

1 = N
∫ +∞

−∞

dvx

∫ +∞

−∞

dvy

∫ +∞

−∞

dvz

∫

dV exp

(

−1
2 mv2 + eV (r)

kT

)

= N
∫ +∞

−∞

e−mv2
x/2kT dvx

∫ +∞

−∞

e−mv2
y/2kT dvy

∫ +∞

−∞

e−mv2
z/2kT dvz

∫

dV eeV (r)/kT

= N
[

2πkT

m

]3/2

V eeV (r0)/kT (5.18)

where we have used the Gaussian integral:

∫ +∞

−∞

e−αx2

dx =

√

π

α
(5.19)



114 Langmuir’s Probe

A

CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC

vx ∆t

Figure 5.2: Seeking the number of electrons to hit the area A, focus on just those electrons
with some particular x-velocity, vx. Electrons within vx∆t of the wall will hit it sometime
during upcoming time interval ∆t. The number of such electrons that will hit an area A will
be equal to the number of such electrons in the shaded volume. Note that many electrons
in that volume will not hit A because of large perpendicular velocities, but there will be
matching electrons in neighboring volumes which will hit A. To find the total number of
hits, integrate over all possible vx.

and the mean value theorem to replace the integral over the volume V of the electron gas
with V times some value of the integrand in that domain. Thus:

probability =
e−E/kT

[

2πkT
m

]3/2 VeeV (r0)/kT
=

1

V
[ m

2πkT

]3/2
exp

(

−
1
2mv2 − e(V − V0)

kT

)

(5.20)

So, if we have N (non-interacting) electrons in V, the expected distribution of electrons
(w.r.t. position and velocity) can be expressed as:

f = n0

[ m

2πkT

]3/2
exp

(

−
1
2mv2 − e(V − V0)

kT

)

(5.21)

where n0 = N/V is the bulk electron density which is also the electron density at potential
V0. If we don’t care about the distribution of electron speed, we can add up (integrate)
over all possible speeds (which just reproduces the Gaussian factors from N ), resulting in
the electron number density, n:

n = n0 exp

(

e(V − V0)

kT

)

(5.22)

D. Collision Rate: If we just care about the distribution of velocity in one direction (say,
vx), integrals over the other two directions (vy, vz) results in:

fx = n0

[ m

2πkT

]1/2
exp

(

−
1
2mv2

x − e(V − V0)

kT

)

(5.23)

We simplify further by considering the case where the potential is a constant (i.e., V = V0).
In order to calculate the number of electrons that hit an area A during the coming interval
∆t, focus on a subset of electrons: those that happen to have a particular velocity vx. (We
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will then add up all possible vx, from vmin to ∞. For this immediate problem vmin = 0, i.e.,
any electron moving to the right can hit the wall; however, we’ll need the more general case
in a few pages.) An electron must be sufficiently close to the wall to hit it: within vx∆t.
The number of electron hits will be equal to the number of such electrons in the shaded
volume in Figure 5.2. To find the total number of hits, integrate over all possible vx:

number of hits =

∫

∞

vmin

dvx fx Avx∆t (5.24)

= A∆t n0

[ m

2πkT

]1/2
∫

∞

vmin

exp

(

−
1
2mv2

x

kT

)

vx dvx (5.25)

= A∆t n0

[ m

2πkT

]1/2 kT

m

∫

∞

mv2
min/2kT

e−ydy (5.26)

= A∆t n0

[

kT

2πm

]1/2

exp

(

−
1
2mv2

min

kT

)

(5.27)

−→ A∆t n0

[

kT

2πm

]1/2

for vmin → 0 (5.28)

Thus the particle current density, Je, (units: hits per second per m2) is

Je =
hits

A∆t
=

1

4
ne

[

8kT

πm

]1/2

=
1

4
ne 〈v〉 (5.29)

B. Debye Length (λD): To introduce the Debye length, we consider a very simplified case:
the potential variation due to varying electron density in a uniform (and nearly canceling,
i.e., ni = ne0) ion density. By Poisson’s equation:

ǫ0 ∇2V = −e
(

ni − ne0e
eV/kT

)

= −ene0

(

1 − eeV/kT
)

≈ ene0

(

eV

kT

)

(5.30)

where we have assumed eV/kT ≪ 1 so we can Taylor expand. If we consider variation in
just one direction (x), we have:

d2V

dx2
=

(

e2ne0

ǫ0kT

)

V =
1

λ2
D

V (5.31)

with exponentially growing/decaying solutions of the form: V ∝ exp (±x/λD). We learn
from this that deviations from charge neutrality take place on a length scale of λD, and are
self-reinforcing so that very large changes in the potential can be accomplished in a distance
of just a few λD.

In the cathode glow, high speed electrons (accelerated in the large electric field in the
neighboring cathode dark space) collision-ionize the gas. Many of the newly created ions
are attracted to the cathode. Accelerated by cathode dark space electric field, the ions crash
into the cathode. The collision results in so-called secondary electron emission15 from the
cathode. These secondary electrons are then repelled from the cathode and cause further
ionization in the cathode glow region. The observed voltage drop near the cathode (the
“cathode fall”), is exactly that required so that, on average, a secondary electron is able to

15Secondary electron emission is the key to photomultiplier tubes used to detect single photons.
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Figure 5.3: At its simplest, a Langmuir probe is just a wire stuck into the plasma. Of
course, electrical contact with the plasma is limited by the plasma sheath. An external
power supply allows the probe’s voltage to be adjusted and the resulting current measured.
The characteristics of the plasma can be determined by careful analysis of the resulting IV
relationship.

reproduce itself through the above mechanism. Clearly the cathode fall depends both on
the gas (how easy it is to ionize) and the cathode material (how easy is it to eject secondary
electrons). Luckily we will not need to understand in detail the processes maintaining
the discharge near the cathode. A properly operating Langmuir probe does not utilize
secondary electron emission, that is we limit voltage drop near the probe to much less than
the cathode fall.

Langmuir Probe Theory

As stated above, if a wire is stuck into a plasma, instead of connecting to the plasma
potential (Vp) it instead charges to a negative potential (the floating potential: Vf < Vp)
so as to retard the electron current enough so that it matches the ion current. An equal
flow of electrons and ions—zero net current— is achieved and charging stops. If the wire
is held at potentials above or below Vf , a net current will flow into the plasma (positive I:
plasma electrons attracted to the probe), or out from the plasma (negative I: plasma ions
attracted to the probe). Figure 5.3 displays a Langmuir probe IV curve dividing it up into
four regions (A–D):

A. When the Langmuir probe is well above the plasma potential it begins to collect some
of the discharge current, essentially replacing the anode.

B. When the probe is at the plasma potential (left side of region B), there is no plasma
sheath, and the surface of the probe collects ions and electrons that hit it. The electron
current is much larger than the ion current, so at Vp the current is approximately:

Ip = eA1

4
ne

[

8kTe

πm

]1/2

(5.32)
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where A is the area of the probe. For V > Vp, the sheath forms, effectively expanding
slightly the collecting area. Thus the probe current increases slightly and then levels
off in this region.

C. When the Langmuir probe’s potential is below Vp, it begins to repel electrons. Only
electrons with sufficient kinetic energy can hit the probe. The minimum approach
velocity vmin allowing a probe hit can be determined using conservation of energy:

1

2
mv2

min − eVp = −eV (5.33)

1

2
mv2

min = e(Vp − V ) (5.34)

where the probe is at potential V . Equation 5.27 then reports that the resulting
electron current is

I = eA ne

[

kTe

2πm

]1/2

exp

(

−e(Vp − V )

kTe

)

(5.35)

For V ≪ Vp, very few of the electrons have the required velocity. At V = Vf the
electron current has been suppressed so much that it equals the ion current. (The ion
current is always present in region C, but typically for V > Vf it is “negligible” in
comparison to the electron current.)

D. In this region the probe is surrounded by a well developed sheath repelling all electrons.
Ions that random-walk past the sheath boundary will be collected by the probe. As
the sheath area is little affected by the probe voltage, the collected ion current is
approximately constant. (At very negative voltages, V ∼ −60 V, secondary electron
emission following ion hits leads to large currents, and a glow discharge.) The equation
for this ion current is a bit surprising (that is not analogous to the seeming equivalent
electron current in region B):

Ii ≈ −1

2
eA ni uB (5.36)

where uB is the Bohm16 velocity—a surprising combination of electron temperature
and ion mass:

uB =
√

kTe/Mi (5.37)

Note that Equation 5.15 would have suggested a similar result but with the thermal
velocity rather than the Bohm velocity.

Region D: Ion Current

As shown in Figure 5.4, consider bulk plasma (ni = ne = n0, located at x = 0 with a plasma
potential we take to be zero Vp = 0) near a planar Langmuir probe (located at x = b biased
with a negative voltage). In the bulk plasma, the ions are approaching the probe with a

16David Bohm (1917–1992) Born: Wiles-Barre, PA, B.S. (1939) PSU, joined Communist Party (1942),
Ph.D. (1943) Berkeley — Oppenheimer’s last student before he became director at Los Alamos. Cited for
contempt by McCarthy’s House Un-American Activities Committee, Bohm was arrested in 1950. Although
acquitted at trial, he was nevertheless blacklisted, and ended up in London.
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Figure 5.4: When the Langmuir probe is negatively biased relative to the plasma, it attracts
ions from the plasma (and repels electrons). Of course, the the accelerating electric field
(from voltage difference) is largely confined to the edge of the plasma, the plasma sheath.
The resulting ion current density Ji should be continuous: the same for every x.

velocity u0. The ions are accelerated towards the negatively biased probe; we can determine
their velocity, u(x) at any position by applying conservation of energy:

1

2
Miu

2 + eV (x) =
1

2
Miu

2
0 (5.38)

u(x) = u0

√

1 − 2eV (x)

Miu2
0

(5.39)

The moving ions constitute a steady electric current density:

Ji = en(x)u(x) = en0u0 (5.40)

(i.e., Ji doesn’t depend on position), so n(x) must decrease as the ions speed toward the
probe.

n(x) = n0u0/u(x) =
n0

√

1 − 2eV (x)
Miu2

0

(5.41)

The varying charge density affects the electric potential which in turn affects the electron
density through the Boltzmann equation (Equation 5.22). Poisson’s equation reads:

d2V

dx2
= −ρ(x)

ǫ0
=

e

ǫ0
n0



exp

(

eV (x)

kTe

)

− 1
√

1 − 2eV (x)
Miu2

0



 (5.42)

The first step in solving most any differential equation, is to convert it to dimensionless
form. We adopt dimensionless versions of voltage, position, and velocity:

Ṽ =
eV

kTe
(5.43)
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x̃ =
x

λD
= x

[

n0e
2

ǫ0kTe

]1/2

(5.44)

ũ0 =
u0

uB
=

u0
√

kTe/Mi

(5.45)

If we multiply Equation 5.42, by e/kTe, we find:

d2Ṽ

dx2
=

1

λ2
D









exp(Ṽ ) − 1
√

1 − 2Ṽ
ũ2
0









(5.46)

or
d2Ṽ

dx̃2
= exp(Ṽ ) − 1

√

1 − 2Ṽ
ũ2
0

(5.47)

First let’s simplify notation, by dropping all those tildes.

d2V

dx2
= exp(V ) − 1

√

1 − 2V
u2
0

(5.48)

The physical solution should show the neutral plasma picking up a positive charge density
as we approach the probe (as electrons are repelled and ions attracted to the probe). The
r.h.s. of Equation 5.48 is proportional to the charge density ne − ni which is nearly zero at
x = 0 (where V = 0) and monotonically declines as x approaches the probe (where V < 0).
If we Taylor expand the r.h.s., we find:

ne − ni ∝ exp(V ) − 1
√

1 − 2V
u2
0

≈
(

1 + V +
1

2
V 2 + · · ·

)

−
(

1 +
1

u2
0

V +
3

2u4
0

V 2 + · · ·
)

=

(

1 − 1

u2
0

)

V +
1

2

(

1 − 3

u4
0

)

V 2 + · · · (5.49)

Thus u0 ≥ 1 is required for ni > ne when V < 0. Maximizing the extent of charge neutrality
requires u0 = 1. As shown in Figure 5.5, the choice u0 = 1 works throughout the V < 0
range (i.e., beyond the range of convergence of the Taylor’s series).

Note that we can numerically solve this differential equation using Mathematica:

NDSolve[{v’’[x]==Exp[v[x]]-1/Sqrt[1-2 v[x]/u0^2],v[0]==0,v’[0]==0},v,{x,0,20}]

but, it’s not quite that simple. The unique solution with these boundary conditions, is
V = 0 everywhere. There must be some small electric field (V ′(0) < 0 ⇐⇒ E > 0) at x = 0
due to probe. The smaller the choice of E, the more distant the probe. See Figure 5.6.

We have concluded, u0 = 1, or returning to dimensioned variables: u0 = uB . However,
we must now determine how the ions arrived at this velocity. It must be that in the much
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Figure 5.6: Mathematica solutions of our differential equation (5.48) with V ′(0) = −.0068
(top) and V ′(0) = −.00067 (bottom). Smaller E simply places the probe at a greater
distance without much changing the voltage in the vicinity of the probe (i.e., in the sheath).
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larger region (“pre-sheath”, x ≪ 0), under conditions of near charge neutrality (ne ≈ ni),
the ions traveled “downhill” a potential difference of:

V (−∞) − V (0) =
K.E.

e
=

1
2Miu

2
B

e
=

kTe

2e
(5.50)

Thus, at x = 0, the plasma density has been depleted compared to that at x = −∞:

ni = ne = n0 = n∞e∆V/kTe = n∞e−1/2 (5.51)

The corresponding current density is:

J = en0u0 = en∞e−1/2uB ≈ .61 en∞

√

kTe

Mi
(5.52)

Clearly this is an approximate argument. Other arguments can give lower (e.g., .40) con-
stants. We adopt as our final equation (if only approximate: ±20%)

Ji ≈
1

2
en∞

√

kTe

Mi
(5.53)

Region C

Plasma Potential, Vp

We have said that for V < Vp, the electron current to the probe is exponentially growing
essentially because of the exponential form of the Maxwell-Boltzmann distribution. For
V > Vp, the electron current to the probe continues to grow, but only because of expanding
collecting area due to an expanding plasma sheath. The boundary between two cases is
defined by the point of maximum slope. The point where the slope is a maximum, of course,
has the second derivative zero—an inflection point. Thus Vp is defined by I ′′(Vp) = 0. (This
is called the Druyvesteyn criteria.)

In calculus you’ve learned how to apply a precise definition of derivative to find the deriva-
tives of various functions, but how can you determine the second derivative from a set of
data?

We begin with a qualitative treatment. If you have a set of equally spaced data points:
xi = ih where i ∈ Z (i is an integer, h might have been called ∆x), then (f(xi+1)−f(xi))/h
(the slope of a line through the points (xi, f(xi)) & (xi+1, f(xi+1)) ought to be something
like f ′(xi + h/2) (the derivative half way between xi & xi+1). Similarly, f ′(xi − h/2) ≈
(f(xi) − f(xi−1))/h. Thus:

f ′′ ≈ f ′(xi + h/2) − f ′(xi − h/2)

h
=

f(xi+1) + f(xi−1) − 2f(xi)

h2
(5.54)

where we imagine f ′′ is evaluated half way between xi + h/2 & xi − h/2, that is, at xi.

More formally, theoretically f has a Taylor expansion:

f(xi + y) = f(xi) + f ′(xi)y +
1

2
f ′′(xi)y

2 +
1

6
f ′′′(xi)y

3 +
1

24
f ′′′′(xi)y

4 + · · · (5.55)
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calculated f ′ and f ′′ increasingly diverge. See that numerical differentiation exacerbates
noise. (C) Doubling the number of data points (with the same level of random noise as in
B), makes the situation much worse. While the data points seem to follow f adequately, f ′

shows large deviations and f ′′ does not at all track the actual derivative.

So:

f(xi + h) = f(xi+1) = f(xi) + f ′(xi)h +
1

2
f ′′(xi)h

2 +
1

6
f ′′′(xi)h

3 +
1

24
f ′′′′(xi)h

4 + · · ·

f(xi − h) = f(xi−1) = f(xi) − f ′(xi)h +
1

2
f ′′(xi)h

2 − 1

6
f ′′′(xi)h

3 +
1

24
f ′′′′(xi)h

4 + · · ·

f(xi + h) + f(xi − h) = 2f(xi) + f ′′(xi)h
2 +

1

12
f ′′′′(xi)h

4 + · · · (5.56)

with the result:

f(xi + h) + f(xi − h) − 2f(xi)

h2
= f ′′(xi) +

1

12
f ′′′′(xi)h

2 + · · · (5.57)

Thus if f ′′′′(xi)h
2/f ′′(xi) ≪ 1 (which should follow for sufficiently small h), Equation 5.54

should provide a good approximation for f ′′(xi). While ever smaller h looks good mathe-
matically, Figure 5.7 shows that too small h plus noise, is a problem.

Root Finding—Floating Potential, Vf & Plasma Potential, Vp

The floating potential is defined by I(Vf ) = 0. Of course, it is unlikely that any collected
data point exactly has I = 0. Instead a sequence of points with I < 0 will be followed
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by points with I > 0, with Vf lying somewhere between two measured points. We seek to
interpolate to find the best estimate for Vf .

We begin with the generic case, where we seek a root, i.e., the x value such that y(x) = 0.
We start with two data points (x1, y1) and (x2, y2) with y1 < 0 and y2 > 0. The line
connecting these two points has equation:

y =
∆y

∆x
(x − x1) + y1 =

y2 − y1

x2 − x1
(x − x1) + y1 (5.58)

We seek the x value for which the corresponding y value is zero:

∆y

∆x
(x − x1) + y1 = y = 0 (5.59)

x − x1 = −y1
∆x

∆y
(5.60)

x = x1 − y1
∆x

∆y
(5.61)

In the case of the floating potential (I(Vf ) = 0), our (xi, yi) are a sequence of voltages with
measured currents: xi = Vi, yi = I(Vi), and we can apply the above formula to find the
voltage, Vf where the current is zero.

The same generic result can be used to estimate the plasma potential, where I ′′(Vp) = 0.
Here xi = Vi, yi = I ′′(Vi). Just as in the floating voltage case, it is unlikely that any
collected data point exactly has I ′′ = 0. Instead a sequence of points with I ′′ > 0 will be
followed by points with I ′′ < 0, with Vp lying somewhere between two measured points.
You will apply the generic interpolate formula to find the best estimate for Vp.

Electron Temperature, Te

If we combine Equation 5.36 for the ion current with Equation 5.35 for the electron current,
we have an estimate for the total current through out Region C:

I = −1

2
eA ni uB +

1

4
eA ne

[

8kTe

πm

]1/2

exp

(

−e(Vp − V )

kTe

)

(5.62)

=
1

2
eA nuB

{

−1 +

[

2Mi

πm

]1/2

exp

(

−e(Vp − V )

kTe

)

}

(5.63)

= k1 + k2 exp ((V − Vp)/k3) (5.64)

Use of this equation is based on a long list of assumptions (e.g., constant collection area A,
Maxwell-Boltzmann electron speed distribution, ni = ne = n. . . ). These assumptions are
not exactly true, so we do not expect this equation to be exactly satisfied: we are seeking a
simplified model of reality not reality itself. By fitting this model equation to measured IV
data, we can estimate the parameters k1, k2, k3. Since k3 = kTe/e we can use it to estimate
the electron temperature. Similarly, k1 represents a measure of the ion current from which
(once Te is known) ni can be calculated using Equation 5.36.

In order to start a non-linear fit as in Equation 5.64, we need initial estimates for the
parameters ki. Measurement of Vf (where I = 0) and Equation 5.63, provide an estimate
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for Te:

0 = I =
1

2
eA n uB

{

−1 +

[

2Mi

πm

]1/2

exp

(

e(Vf − Vp)

kTe

)

}

(5.65)

1 =

[

2Mi

πm

]1/2

exp

(

e(Vf − Vp)

kTe

)

(5.66)

0 =
1

2
ln

[

2Mi

πm

]

−
(

e(Vp − Vf )

kTe

)

(5.67)

e

kTe
(Vp − Vf ) =

1

2
ln

[

2Mi

πm

]

(5.68)

kTe

e
=

2(Vp − Vf )

ln
[

2Mi

πm

] (5.69)

Notice that the unit for k3 = kTe/e is volts, so ek3 = kTe in units of J or, most simply,
k3 = kTe in units eV17 (since eV=e×Volt). It is common practice in plasma physics to
report “the temperature” [meaning kT ] in eV.

The ion current k1 can be estimated from the “saturated current” in Region D, i.e., the
nearly constant current a volt or so below Vf . (For future convenience, we name this
“saturated current” in Region D, Ii.)

See that for V = Vp, I = k1 + k2. Since the ion current is “negligible” for most of region C,
we can estimate k2 from the measured current near Vp. (For future convenience, we name
the current actually measured at the data point just below Vp, Ip.)

Plasma Number Density, n

Given kTe, we have several of measuring n:

A. measured Ii and Equation 5.36, and

B. measured Ip and Equation 5.32,

Additionally we could use the fit values of Ii or Ip (k1 or k2, in Equation 5.64). These
methods will give answers that differ by a factor of 5 or more! When different ways of
measuring the same thing give different results, “systematic error” is the name of the
problem. The source of this problem is our imperfect model of current flow in Region
C (all those inaccurate assumptions). In particular, both (A) and (B) are hindered by the
assumption of a Maxwell-Boltzmann speed distribution. (In fact measurements in Region C
are commonly used to measure18 that speed distribution.) Often fit parameters are preferred
to individual data points (essentially because the fit averages over several data points), but
that is not the case here. Thus the method considered most accurate is (A), although it

17Recall: 1 eV = 1.6022 × 10−19 J is the energy an electron gains in going through a potential difference
of 1 V.

18For example, Langmuir probes have been used to measure the electron speed distribution in the plasma
that gives rise to aurora (northern lights). The results show a non-Maxwellian speed distribution: lots of
high-speed “suprathermal” electrons.
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Table 5.1: R.C.A. 0A4-G Gas Triode Specifications

probe length 0.34 cm
probe diameter 0.08 cm
tube volume (approx.) 40 cm3

peak cathode current 100 mA
DC cathode current 25 mA
starter anode drop (approx.) 60 V
anode drop (approx.) 70 V
minimum anode to cathode breakdown voltage
(starter anode potential 0 volts) 225 V

could be improved19 to account for the slowly varying—rather than constant—ion current
in Region D. (That is, how precisely is the ion saturation current determined?) However,
even with that ambiguity resolved, Equation 5.36 itself has expected variations of the order
of 20%. Mostly physicists just live with that level of accuracy, as improved measurement
methods (like microwave phase shifts due to the index of refraction of the plasma) are often
not worth the effort.

Apparatus: 0A4-G Gas Triode Tube

Figure 5.8 displays the anatomy of a 0A4-G gas triode20. As shown in Figure 5.9, a discharge
through the argon gas is controlled by a Keithley 2400 current source. Various cathode
currents (Ic = −5,−10,−20,−40 mA) will produce various plasma densities. During tube
operation, you should see the cathode glow expand as larger discharge currents are produced.
Note also that the cathode voltage (Vc ∼ −60 V) varies just a bit, over this factor of 8
increase in Ic. A glow discharge does not act like a resistor! A Keithley 2420 is used to
sweep the probe voltage and simultaneously measure the probe current. Figure 5.10 shows
representative results. You should note that the cathode glow is not perfectly stable. It can
jump in position for no obvious reason. If a jump occurs during a probe sweep, the resulting
data will look noisy (I ′′ randomly jumping in sign rather than smoothly going from I ′′ > 0
to I ′′ < 0) and cannot be used. Figure 5.11 shows fits to the data between Vf and Vp. The
resulting reduced χ2 were of order 105: the measurement errors are much smaller than the
deviations between the reality and the model. While the model is “wrong”, it nevertheless
supplies a reasonable representation of the data. A fudge of the errors allows parameter
error estimates to be extracted from the covariance matrix, but it’s hard to give meaning
to the resulting error.

19This issue is addressed by Chen in report LTP-111 Chen206R.pdf listed as a web reference at the end of
this document. Models of the Universe can usually be improved at a cost of greater complexity. Choosing
an appropriate level of complexity is something of an art. Here we are using the simplest possible model.

20This tube is also called a cold cathode control tube. In its usual applications, what is here called the
anode is called the starter anode and what is here called the Langmuir probe is called the anode.
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Figure 5.8: The 0A4-G triode has a large cold cathode and two “anodes” surrounded by low
pressure argon gas. A glow discharge in the argon gas may be maintained by an approximate
−60 V drop between the cathode (pin 2) and the “starter anode” (pin 7). The pin 5 anode
may then be used as a Langmuir probe in the resulting plasma. The figure shows an R.C.A.
0A4G; A Sylvania 0A4G has the same components arranged differently.
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Figure 5.9: When the cathode is held at a voltage of Vc ≈ −60 V relative to the anode,
the argon gas in the tube partially ionizes and a discharge is set up between the anode and
cathode. The discharge current is controlled by a Keithley 2400 in current-source mode,
e.g., Ic = −20 mA. The voltage V on the Langmuir probe is swept by the Keithley 2420, and
the current I is simultaneously measured. The resulting IV curve allows us to determine
the characteristics of the plasma. Note that the pinout shows the tube as viewed from the
bottom.
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Figure 5.10: The IV curves for the Langmuir probe in a 0A4G tube for Ic =
−40,−20,−10,−5 mA. The plasma potential Vp is marked with a square; The floating
potential Vf is marked with a circle. Since the ion current is so much smaller than the
electron current, blowing up the y scale by a factor of 200 is required to see it (see plot B).
In this lab we are primarily concerned with Region C: between Vf and Vp.

–12 –10 –8 –6 –4

1.E–04

1.E–05

1.E–06

1.E–07

 

Voltage (V)

C
ur

re
nt

 (
A

)

Figure 5.11: In Region C, between Vf and Vp, I > 0 so we can display it on a log scale.
Assuming a constant ion current (k1), constant sheath area, and a Maxwell-Boltzmann
distribution of electron speed, we can fit: I(V ) = k1+k2∗exp((V −Vp)/k3). The horrendous
reduced χ2 shows that these assumptions are not exact, nevertheless the fit does a reasonable
job of representing the data (say, ±10%)
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Computer Data Collection

As part of this experiment you will write a computer program to control the experiment.
Plagiarism Warning : like all lab work, this program is to be your own work! Programs
strikingly similar to previous programs will alarm the grader. I understand that program-
ming may be new (and difficult) experience for you. Please consult with me as you write
the program, and test the program (with tube disconnected!) before attempting a final
data-collecting run.

In the following I’m assuming the probe voltage V is stored in array v(i), probe current
I is stored in array a(i), and the second derivative of prove current I ′′ is stored in array
app(i). Your program will control all aspects of data collection. In particular it will:

0. Declare and define all variables.

1. Open (i.e., create integer nicknames—i.e., iunit—for) the enets gpib0 and gpb1.

2. Initialize the source-meters which must be told the maximum voltage and current to
occur during the experiment. For the 2420, you can limit V, I to 25. V and .005 A;
For the 2400, limit V, I to 100. V and 0.1 A;

3. Display the status of all devices before starting data collection.

4. Open files:

(a) VI.dump.dat (intended for all V, I, I ′′ of probe, with comments (!) for cathode
Ic, Vc)

(b) VI.fit.dat (intended for Region C: V, I, δI, I ′′ of probe, with comments for
cathode Ic, Vc, calculated Vf , Vp, estimated Te, measured Ii, Ip, and the number
of data points. The data points in this file are for fitting Equation 5.64:

f(x) = k1 + k2 ∗ exp((x− k4)/k3) (5.70)

Note that k4=Vp is a constant, not an adjustable parameter.)

5. Tell the 2400 source-meter to source a cathode current, Ic = −20 mA

6. Let the system sleep for 60 seconds to approach thermal equilibrium.

7. Repeat the below data collection process six times. Since you will need just three
repeats for each Ic, this will probably produce more data than is needed. However
some data sets may be noisy because of unstable (moving, flickering) cathode glow.
Noisy data will have multiple sign changes in calculated I ′′; Discard this data. If
one run of this program fails to produce enough good data (three repeats), simply
rename the data files (to preserve the data produced in the initial run), and re-run
the program.

Do the following for four different Ic: 5, 10, 20 40 mA (e.g., acath=-.005*2**j for
j=0,3). Thus there will be 4 × 6 voltage sweeps.

(a) Tell the 2400 source-meter to source a cathode current, Ic

(b) Let the system sleep for 10 seconds to approach thermal equilibrium.
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(c) Tell the 2420 to perform a linear probe voltage sweep from Vmin to Vmax, includ-
ing N data points (say, N = 100). In Figure 5.10, you can see that the choice
made was Vmin = −15. and Vmax = +5., but your choices will vary and must
be determined by trial and error (see below). The aim is to find a range that
includes from a few volts below Region C to a few volts above Region C for every
cathode current Ic.

(d) Turn off the probe voltage.

(e) Repeat (a) thus obtaining up-to-date values for Ic, Vc

(f) Write a comment (‘!’) line to the file VI.dump.dat containing Ic, Vc from the
2400.

(g) Write a line to the file VI.dump.dat containing the first probe (V, I) data point:
v(1), a(1)

(h) Do for i=2,N-1 the following:

i. Calculate I ′′ and store the value in the ith spot of an array i.e.,
app(i)=a(i+1)+a(i-1)-2*a(i).

ii. Write the probe data: V, I, I ′′, i.e., v(i), a(i), app(i), to the file VI.dump.dat

(i) Write a line to the file: VI.dump.dat containing the last (i=N) data point V, I.

(j) Find the data point just before Vf with code21 like:

do i=2,N-1

if(a(i)>0.and.a(i+1)>0)goto 100

enddo

100 ivf=i-1

if(ivf.lt.15) STOP

The final line halts the program if ivf< 15, as we need Region D data to find the
ion current, Ii. If the program STOPs, Vmin will need to be reduced to capture
this data, and the program re-run.

(k) Using Equation 5.61 and the data points at ivf and ivf+1, find Vf . Note: in the
general case Equation 5.61, we were seeking x such that y(x) = 0; Here we are
seeking Vf which is defined as the voltage such that I(Vf ) = 0, so, for example,
x1 →v(ivf), y1 →a(ivf), and x → Vf .

(l) Find the data point just before Vp with code22 like:

do i=ivf+1,N-2

if(app(i)>0.and.app(i+1)>0)goto 200

enddo

STOP

200 ivp=i-1

Note that the program is halted if the plasma potential has not been found before
we run out of data. In that case Vmax will need to be increased to capture this
data, and the program re-run.

21The check for two successive data points gone positive is done to avoid mistaking one point of noise for
Vf .

22The check for two successive data points with I
′′

< 0 is done to avoid mistaking one point of noise for
Vp
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(m) Using Equation 5.61 and the data points at ivp and ivp+1, find Vp. Note Vp

is defined as the voltage such that I ′′(Vp) = 0, so, for example, x1 →v(ivp),
y1 →app(ivp) , and x → Vp.

(n) Write comment lines to the file: VI.fit.dat recording:

i. Ic, Vc, Vf , Vp (also print this to the screen, so you can monitor data collec-
tion)

ii. ’!set k1= ’,a(ivf-15),’ k2= ’,a(ivp),’ k3= ’, 0.18615*(Vp − Vf )
The aim here is to record basic plasma parameters (which are also needed
as an initial guess in the fit to Equation 5.70) in a format that allows easy
copy and paste into plot and fit. k1 is the measured ion current Ii; k2 is
the measured current at Vp (denoted Ip); k3 is an estimate for kTe/e, the
electron temperature in eV.
Notes: The estimate for k3 is based on Equation 5.69 where 0.18615 =
2/ ln(2Mi/πm). We are assuming that ivf-15 is far enough below Vf (i.e.,
in Region D) that Ii = a(ivf− 15). You should check (after the fact) that
this is the case, i.e., Vf − v(ivf− 15) ≫ k3. If this condition is not met,
simply use a larger offset than 15 and re-run the program.

iii. ’!set k4= ’, Vp, ’ npoint= ’, ivp-ivf

k4 is the (not adjusted) plasma potential, Vp, whereas k1-k3 are varied from
the above initial guesses to get the best fit to Equation 5.70 in Region C.

(o) For i=ivf+1,ivp write the probe data V, I, δI, I ′′ to the file VI.fit.dat with
one V, I, δI, I ′′ data ‘point’ per line.

8. Turn off the output of the 2400.

9. Close all files.

Data Analysis

If all has gone well you have three good data sets for four different Ic, something like 1000
data points. We could spend the next semester analyzing this data! Instead I suggest below
a simplified analysis scheme.

Start by making a composite plot similar to Figure 5.10A showing one IV curve for each of
the four Ic. For these plots, choose Vmin & Vmax so that all behaviors (Regions A–D) are
displayed. Make a similar plot showing three IV curves for one of the four Ic. The aim here
is to test for reproducibility; because of time limitations we’ll just check the reproducibility
of this one selected Ic. (I’ll call this selected Ic data set I∗c .) These six data sets (one IV
curve is on both plots) will be analyzed in greater detail. In order to properly fit the data,
you will want to have more than 15 data points in the region between Vf and Vp (this may
require reducing the range Vmin through Vmax for the probe voltage sweep so it focuses just
on Region C: say from about 4 V negative of the lowest Vf to 2 V positive of the highest
Vp and then re-taking the data). Additionally you should find that all six data sets have
approximately the same number of data points.

Electron Temperature in eV: k3
Fit Equation 5.70 to the six data sets. Note that the file itself contains the required initial
guesses for adjusted parameters k1-k3 and the fixed value for k4. Expect to see large



Langmuir’s Probe 131

reduced χ2 which signals a too-simple model. No definite meaning can be attached to error

estimates from such poor fits, nevertheless some sort of nonsense needs to be reported.
On page 16 we explored options for dealing with such ‘unusual’ fits. Option #5: ‘In dire
circumstances’ you can use fudge command in fit to change your errors so that a reduced
χ2 near one will be obtained. A re-fit with these enlarged errors then gives a new covariance
matrice from which an estimate of parameter errors can be determined. Parameter values
within the range allowed by these errors would produce as good (or bad) a fit to the data
as the ‘best’ values. As the name suggests fudge is not exactly legitimate23 , nevertheless
it is what Linfit has been silently doing all these years. Option #4: ‘Bootstrap’ the data:
repeatedly fit subsets of the data and see how the resulting fit parameters vary with the
multiple fits. This is essentially a way to repeat the experiment without taking new data.
The fit command boots will report the results of nboot (default: 25) re-fits to subsets of
your data along with the standard deviation of the fit parameters. Using either option, we
are particularly interested in the some estimate of error in fit value of k3: use the square
root of the appropriate diagonal element of the covariance matrice of a fudged fit or the
reported standard deviation of k3 from a bootstrap.

For I∗c , compare the two errors for k3: σ (standard deviation of 3 fit values of k3) and that
from the fudged covariance matrix. Are they in the same ballpark (say, within a factor of
two)?

Calculate the electron temperature of the plasma both in eV and K. Comment on the
relationship (if any) between Te and Ic.

Plasma Number Density: n
We are interested in two sorts of ‘error’ in the plasma density n: reproducibility and an
estimate of ‘systematic’ error. In the first case we’re asking: “given the same Ic is applied,
how much do conditions in the plasma vary?” In the second case we interested in what the
actual value of n is. We can estimate this systematic error by measuring n by two different
methods:24 n calculated using Ii (Method A: let’s call this ni) and n calculated using Ip

(Method B: let’s call this np). Let’s be clear here: ni, np, ne, n are all supposed to be the
same thing: the number of electrons (or ions) per m3 in the plasma. So

np

ni
=

−Ip/Ii
√

2Mi/πm
(5.71)

should be one; but it won’t be: systematic error is present!

In your lab notebook record these results in tables similar that shown in Table 5.225. (For
this example, I selected I∗c = 20 mA.) Note particularly to record exactly the proper number
of significant figures in these tables! You should also copy & paste each full fit report into a
long concatenated file and include the resulting file in your notebook. As previously noted,
the reduced χ2 for these fits is likely to be “horrendous”. Pick out your highest reduced χ2

fit, and plot the fitted function along with the data points on semi-log paper. (The results
should look similar to Figure 5.11, but with just one data set.) Do the same for the best
fit.

23for further discussion see: http://www.physics.csbsju.edu/stats/WAPP2 fit.html
24See page 124; we are discussing here only methods A and B; methods using the fit parameters k1 and

k2 would be additional options.
25The spreadsheet gnumeric may be of use.
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Table 5.2: Simplified data table for reporting Langmuir Probe results.

k3 Ic k3 fit σ
(V) (mA) (V) error

40

20

10
5

Ii Ic median σ % error ni % error
(A) (mA) Ii in Ii (m−3) in ni

40

20

10

5

Ip Ic median σ % error np/ni

(A) (mA) Ip in Ip

40

20

10

5

Calculate26 n for each Ic based on the median Ii. Comment on the relationship (if any)
between n and Ic. Make a power-law fit and log-log plot of the data27

Derive Equation 5.71. Calculate the np/ni and see that n has systematic error, i.e., n
calculated from Ip will be several times larger than the value of n calculated from Ii. This
proves that there are problems with our simple theory.

Miscellaneous Calculations: ‘Lawson Product’ nτ , λD, fp

In 1957 J. D. Lawson determined that power generation from thermonuclear fusion required
temperature, plasma density n and the plasma confinement time τ to meet certain criteria:
a temperature of at least 104 eV with the product: nτ > 1021 m−3 · s. We can estimate τ
because we know that our plasma is moving toward any surface at the Bohm velocity uB .
Given that typically the plasma is within about 1 cm of a wall, find how long it remains
confined, and calculate the “Lawson product” nτ for the I∗c plasma. (It is possible to
directly measure the plasma confinement time by using a scope to time the decay of the
plasma when the glow discharge is suddenly turned off.)

Calculate the Debye length (λD, Eq. 5.14) and the plasma frequency (fp, Eq. 5.1) for I∗c .
Compare λD to the diameter of the Langmuir probe. Will the sheath substantially expand
the collecting area A? According to Koller (p. 140, reporting the results of Compton &
Langmuir28) the mean free path of an electron in a 1 torr argon gas is 0.45 mm. Compare

26http://www.physics.csbsju.edu/cgi-bin/twk/plasma.html can do this in one click.
27I’d use WAPP+ : http://www.physics.csbsju.edu/stats/WAPP2.html.
28Rev. Mod. Phys. 2 (1930) 208
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your λD to this electron mean free path.

Report Checklist

1. Write an introductory paragraph describing the basic physics behind this experiment.
For example, why does the Langmuir probe current increase exponentially with probe
voltage? Why is it that probe currents allow the calculation of plasma density? (This
manual has many pages on these topics; your job is condense this into a few sentences
and no equations.)

2. Computer program: Print out a copy of your program and tape it into your lab
notebook.

3. Plots:

(a) Similar to Figure 5.10A showing one IV curve for each of the four Ic.

(b) Similar to Figure 5.10A but showing three IV curves for I∗c .

(c) Two plots similar to Figure 5.11, showing the Region C fit to the data. (These
plots are to display the best and worst reduced χ2; Record the reduced χ2 on
each plot.)

(d) Power law fit and log-log plot of four (Ic, n) data points.

4. Tabulated results from six fits for k3 (Te) at four different cathode currents including
fudged or bootstrapped results for δk3 and the standard deviation of three k3 for I∗c .
You should copy & paste each full fit report into a long concatenated file. Print that
file and tape it into your notebook. Record the identifying letter on your tube.

5. Tabulated results for measured Ii and Ip at four different cathode currents including
reproducibility errors estimated from the standard deviation.

6. Calculations (self-document spreadsheet or show sample calculations):

(a) kTe in units if eV for four Ic with estimates for errors.

(b) Te in units of K for four Ic.

(c) n calculated from median Ii and k3 for four Ic (with and estimate of reproducibil-
ity error)

(d) np/ni calculated from median Ii and Ip (which provides an estimate of systematic
error)

(e) λD

(f) fp

(g) Lawson product at I∗c

7. Derivation of np/ni (Eq. 5.71).

8. Answers to the questions posed in the Data Analysis section:

(a) Are they in the same ballpark?

(b) Comment on the relationship (if any) between Te and Ic.
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(c) Comment on the relationship (if any) between n and Ic.

(d) Will the sheath substantially expand the collecting area A?

(e) Compare your λD to this electron mean free path.

9. Discussion of errors:

(a) Two methods were used to find “errors” in the electron temperature, Te: (A)
fudged/bootstrap error from a fit and (B) σ from lack of reproducibility. What
is the meaning and significance of fudged/bootstrap error? What is the meaning
and significance of reproducibility error? How would you respond to the question:
“What is the error in Te?” (Note a few sentences are required, not a number!)

(b) Two methods were used to find the plasma number density, n: methods based
on Ii and Ip. What is the meaning and significance of the fact that two different
ways of measuring n produced different results. How would you respond to the
question: “What is n?” (Note a few sentences are required, not a number!)

(c) Consider any one of the basic plasma parameters (n, Te, Vf , Vp) measured in this
lab. Report any evidence that there is systematic error in the parameter. Report
your best guess for the total error (systematic and random) in the parameter.
Report how this error could be reduced.

Comment: Uncertainty

Area: Systemtic Error

Both methods of calculating plasma density (ni and np) used the probe area A, which en-
tered as an overall factor. The probe area was calculated based on the probe geometry data
listed in Table 5.1 which was supplied by reference #9 with no uncertainties. Clearly if the
actual probe geometry differs from that in Table 5.1 there will be a systematic error in both
methods of calculating n. If I guess the uncertainty in length and diameter measurements
based on the number of supplied sigfigs, I find a 6% uncertainty in A. In 2008 a Sylvania
0A4G tube was destroyed, and I took the opportunity to measure the the probe. The re-
sults29 were quite different from those reported in Table 5.1: A was about 20% larger for
this Sylvania tube then for the RCA tube of reference #9. (The Sylvania/GE 0A4G also
looks different from the RCA 0A4G.)

There is an additional significant problem: because the plasma sheath extends several λD

beyond the physical probe, there will be particle collection beyond the surface area of the
probe—the effective area is larger than the geometric surface area; we have made a Spherical
Cow by the simple assumption of A = πdℓ. A glace at Fig. 5.6 on page 120, shows that
the plasma sheath extends about 10 × λD for ∆V ∼ 5 × kTe/e, which amounts to a large
correction to probe diameter. Since the plasma sheath for ions30 in Region D has no reason
to be identical to the plasma sheath for electrons at the plasma potential, the effective A
in the two methods is probably not the same, and hence A does not really cancel out in
deriving Eq. 5.71.

29diameter= 0.025”, length= .2”, the surrounding metal can is about 2 cm×3 cm.
30For example, the mean free path for an electron is much larger than the mean free path for an ion

(approximately 4
√

2×).
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While we have lots of systematic and spherical cow error in our measurement of Te and n,
it should also be emphasized that we do have ‘the right end of the stick’.

Interpreting Results

Inspection of Figure 5.11 shows the unmistakable signs of “large reduced χ2 ”: The fitted
curve misses many error bars. The miss might be called “small”, but the error bar is
smaller still (in fact too small to show in this figure). The plasma density calculated from
Ii disagrees with that calculated from Ip. What should be recorded as our uncertainty in
Te and n? The problem is the result of using simplified theory. What can we conclude from
the fits using inexact31 theory?

First the exponential IV relationship is clearly reflecting the Boltzmann factor at work. To
the extent that there is an electron temperature, our k3 estimate must be fairly accurate.

On the other hand our n values disagree by a factor of three, and there are reasons to
suggest (e.g., uncertain A) the systematic error may be even larger. The disagreement
between ni and np could be improved by better theory. (The assumed Maxwell-Boltzmann
speed distribution, collisions, varying collecting areas due to sheath expansion, . . . can be
corrected —see particularly References 3 & 5.) However, for many practical purposes one
is interested in reproducible control rather measurement. One might be told that: “silicon
wafer etching is to proceed when the indicated n reaches 1014 m−3” with no concern for
what n actually is. Usually the reproducibility error found in the lab is only a few percent,
which is often good enough for industrial control.

Of course, physics is most interested in reality, and what we have found is systematic error:
two different ways of measuring n disagree. While one might argue that calculation of n
based on Ii is more robust than that based on Ip, fundamentally what is needed is additional
methods of determining n to resolve the problem (see Reference 8). This is also beyond the
aims of this lab. The best physics you can do based on this data is to report our estimated
errors with a clear warning that the systematic errors may be larger than the reported
uncertainty.
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