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1 Acronyms
1. Electron Cyclotron Drift Instability≡ (ECDI)

2. Electron Cyclotron Harmonic≡ (ECH)

3. Ion-Acoustic Waves≡ (IAWs)

4. Electron-Acoustic Waves≡ (EAWs)

5. Lower Hybrid Waves≡ (LHWs)

6. Electrostatic≡ (ES)

7. Electromagnetic≡ (EM)

8. Modified Two-Stream Instability (MTSI)

9. Let ECHWs include: Bernstein, totem-pole, and (n+ 1/2) waves

2 Other Names
1. Electron Cyclotron Drift Instability (ECDI)

2. Beam Cyclotron Instability [Lampe et al., 1971a,b, 1972]

3. Electrostatic (ES) Electron-Ion Streaming Instability[Wong, 1970]

3 Ashour-Abdalla and Kennel et. al., [1978a]
Ashour-Abdalla and Kennel [1978] examined nonconvective and convective ECHIs (f≃ (n + 1/2)fce) finding:

1. nce controls which harmonic band can be excited through the upper hybrid frequency

2. Tce controls the spatial amplification→ when 0< Tce/The . 10−2 ⇒ instability is nonconvective while larger values
will eventually cause the instability to become convective

3. if Tce/The . 5× 10−2, quasi-linear diffusion increases Tce faster than resonant diffusion can heat/scatter hot electrons
into the loss-cone

4. if nce/nhe ≃ 3-5, the instability does not occur

4 Ashour-Abdalla and Kennel et. al., [1980]
Ashour-Abdalla et al. [1980] examined ECHIs finding that the waves heated the cold electrons perpendicular to the

field faster than parallel.
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5 Forslund et. al., [1970]
Forslund et al. [1970] examined the electron cyclotron drift instability (ECDI), which is an instability that occurs when

ions drift relative to electrons, Vd, across a magnetic field. The dispersion relation he used was:

(Kλ De)
2 = −1+ e−λ Io(λ )+2ω2

∞

∑
n=1

e−λ In(λ )

ω2− (nΩce)2 +
T e

2T i
Z′

(

ω − kV d

kV Ti

)

(1)

whereΩce = e B/(me c), λ + (k re)2/2, λ = 1/2
√

k⊥V Te/Ωce, re = VTe/Ωce, VTe
2 = 2 Te/me, and Z’(x) is the derivative of

the plasma dispersion function given by Z’(x)= -2 [1 + x Z(x)]. The plasma dispersion function can be writtenas:

Z(x) = i
k
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Z(x) = i
k

| k |
√

πe−x2 −
[

2x− 4
3

x3 +
8
15

x5 + · · ·
]

(for x ≪ 1) (2b)
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√
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8
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x4 + · · ·
]

(for x ≪ 1) (2d)

The instability results from a resonance between the otherwise purely electron cyclotron waves (ECWs) and ions where
∂Fi/∂v > 0, or where v< Vd . Due to the resonance with the ions,γmax for each harmonic occurs near MAX(∂Fi/∂v),
which is about atω /k ∼ Vd - VTi. Note that for allωR < k Vd , γ/Ωce > 0 ⇒ unstable growth. From this, one can see:

1. when (kλ De) > 1, there is an attenuation ofγ ∝ (k λ De)−4, which acts as a cutoff for large (kλ De)

2. for (k re) large, but (kλ De) < 1, all harmonics have roughly equalγ ’s because the resonance condition is (k re) ≃ no

VTe/(Vd - VTi)

3. when Vd > VTi and (kλ De) < 1, (noting thatℑ[Z’] ∼ 1) γ ∝ Ωce Vd /VTe

4. γ 6= γ(me/M i)

5. for larger values ofω pe/Ωce, the Debye length cutoff occurs at smaller values of Vd /VTe ⇒ more harmonics grow
for largerω pe/Ωce

Due toγ ’s dependence onℜ[Z’], there is a strong interaction between the ECWs and ion modes. Note also that Te/Ti has
little effect onγ. Since the Debye length cutoff implies the instability is most effective whenω pe ∼ Ωce for Vd > VTe, we
assume thatω /k > VTe and≫ VTi. Using these assumptions, we can reduce Equation 1 to the following:

1 =
ω pe

2

ω2−Ωce
+

ω pe
2me/Mi

(ω − kV d)
2 (3)

which nicely reduces to the usual two-stream instability for ω pe/Ωce ≫ 1. Equation 3 represents an interaction between
the upper hybrid and a Doppler-shifted lower hybrid mode.

There are three conditions which can squelch the instability:

1. when Vd → 0 (which could result from field diffusion due to the instability itself)

2. when the instability heats the electrons to the Debye-length cutoff

3. when the ions are resonantly heated until the MAX(ℑ[Z’]) for the fundamental is very small and/or lies beyond the
Debye-length cutoff

When VTe ≫ Vd andω pe/Ωce ≫ 1, the instability will preferentially heat the ions instead of the electrons. Since the
resonance occurs near the MAX(∂Fi/∂v), the ECDI can be an effective ion heating mechanism. In addition to heating the
plasma, the ECDI produces an anomalous resistivity which causes a drift and diffusion across the magnetic field.

The ECDI is mostly a longitudinal instability until the particles become relativistic and it does not appear to be affected
by finiteβ e.
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6 Forslund et. al., [1971]
Forslund et al. [1971] examined the nonlinear ECDI, finding significant electron heating due to adiabatic and non-

adiabatic trapping. The ions were heated as well due to trapping. So the electrons are dragged across the magnetic field
by the drifting ions, which produces an effective drag on theions causing them to break thefrozen-in condition and gain
some thermal energy while losing bulk kinetic. Also, ion trapping does not reduce the heating rate.

7 Forslund et. al., [1972]
Forslund et al. [1972] examined the ECDI, examining the perpendicular anomalous resistivity it causes at collisionless

shocks and in lab plasmas. They consider a relative drift, Vd, between electrons and ions that is perpendicular to both the
magnetic field and the shock normal. They treat the ion trajectories as straight because theγECDI ≫ Ωci. If one assumes
thatλ ≫ 1, then one can approximate:

e−λ In(λ ) ≃
√

1
2πλ

(4)

They also assume that the plasma dispersionn functions are of the form:

Z′
i = Z′

[

ωR −k ·Vd

kV Ti

]

(5a)

Z′
e = Z′

[

ωR −nΩce

k‖V Te

]

(5b)

As one might expect, the largest values ofγ occur when k‖ → 0, which results inℜ[Z’] = ℑ[Z’ e] = 0. This simplifies the
growth rate calculation and real frequency result to:

γ
Ωce

≃ no√
πkre

[

T e/(2T i)ℑ[Z′
i]

[1+(kλ De)2− (T e/2T i)ℜ[Z′
i]]

2 +[(T e/2T i)ℑ[Z′
i]]

2

]

(6a)

ωR −nΩce

Ωce
≃ γ

Ωce

[

1+(kλ De)2− (T e/2T i)ℜ[Z′
i]

(T e/2T i)ℑ[Z′
i]

]

(6b)

If we drop the term associated withℜ[Z’ i] in the denominator of Equation 6a (typically okay when Te ≃ Ti), and noting
that MAX(ℑ[Z’ i]) ≃ 1.5 (when its argument is≃ -0.7), then Equations 6a and 6b reduce to:

γ
Ωce

≃ no√
πkre

(

T e

2T i

)

[

3/2

[1+(kλ De)2]2 +[(3T e/4T i)]
2

]

(7a)

ωR −k ·Vd

kV Ti
≃−0.7 (7b)

assumingωR ≃ nΩce and Cosθ = k · Vd/(k Vd), then we can reduce Equations 7a and 7b down to:

k ≃ nΩce

V d −0.7VTi
(8a)

γ
Ωce

≃ Cosθ√
π

(

V d

V Te

)(

T e

2T i

)

[

3/2

[1+(kλ De)2]
2

]

(8b)

≃ Cosθ√
π

(

V d

V Te

)(

T e

2T i

)







3/2

1+
[

(n/Cosθ )(V d/V Te)(Ωce/
√

2ω pe)
]2






(8c)

where I have ignored any electron-electron or electron-ioncollisions.
Not that for all harmonics with (kλ De) < 1, γmax 6= γmax(n, me/M i) and occurs at the same k⊥ (= k Cosθ ) for all k⊥ in

the plane perpendicular toBo. In this case, the last term in the brackets of Equation 8c reduces to unity leaving the growth
rate to be:

γ
Ωce

≃ Cosθ√
π

(

V d

V Te

)(

T e

2T i

)

(9)
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The expected turbulence fills a relatively wide range of angles in the plane perpendicular toBo but parallel toVd.
Anisotropic heating due to cyclotron interactions can change this fan-like resonance into a cone that extends into the
plane containingBo. From Equation 8c when (kλ De) > 1, there is a strong Debye-length cutoff∝ (k λ De)−4 which allows
us to estimate an approximate instability criterion:

V d

V Te
&

n
Cosθ

Ωce√
2ω pe

(10)

From the full resonance condition (Equation 8a) one can see that if VTi → > Vd , then k→ > Debye-length cutoff for all
harmonics. Thus one also must demand that Vd & VTi for an instability to occur.

There are four possible ways to stabilize this instability:

1. Vd is reduced by resistive broadening ofBo

2. VTe is increased by resistive heating which results in successively lower harmonics being stabilized until the n=
1 (fundamental) is stabilized at Vd /VTe ≃ Ωce/ω pe. The primary electron heating will be perpendicular toBo, vari-
ous longitudinal and transverse instabilities driven by the resulting anisotropy could rapidly convert some electron
thermal energy into parallel momentum, thus producing effectively an increase in electron thermal conductivity.

3. VTi can be increased by heating until Vd ≃ VTi, however this is less likely than (1) or (2) because electronheating
is more effective

4. plasma compression⊥-Bo can reduceΩce/ω pe by
√

N2/N1 ⇒ increases the instability threshold.

When considering the full dispersion relation (not shown),there are effects to consider when k‖ 6= 0 that enter through
Z’ e (= Z’[( ωR - n Ωce)/(k‖ VTe)]) in the combinations 1/2ℑ[Z’ e] and (1 +ℜ[Z’ e]/2). Both of these terms go to zero (from
above and below, respectively) for argument→ ∞, and through their quotient (ℑ[Z’ e]/2)/(1 + ℜ[Z’ e]/2) [argument= ∞(0)
→ 0(-∞, from the k‖ > 0 side)]. However, when all terms are considered,γ/Ωce decreases monotonically∝ increasing
k‖. The cutoff occurs when the argument of Z’e → 1, thus (ωR - nΩce)/Ωce ∼ n/(

√
π k re) and the resonance condition

simplifies toωR/k ≃ Vd Cosθ . If we assume (kλ De) < 1, then the spread in k‖ can be shown to be:

k‖

k
.

n√
π

(kre)
2 ≃

(

1√
πn

)(

V dCosθ
V Te

)2

(11)

The spread in k‖ is less for higher harmonics and in general, much narrower than for k⊥. The damping which limits k‖
is cyclotron, NOT Landau, damping! Thus, as the Debye-length (or collisional) cutoff of a harmonic is approached and
exceeded, its k‖ spread→ 0. The important conclusions are:

1. an instability still exists if a weak magnetic field and Te ∼ Ti but does not exist if the magnetic field→ 0

2. the instability is difficult to stabilize (linearly) without significant magnetic field diffusion or electron heating

3. electron collision frequency∝ γ is required to stabilize

4. instability occupies a broad cone of angles in the plane⊥-Bo but a very narrow cone of angles in the plane‖-Bo

7.1 Analytical Linear Theory
The IAW mode still exists in the presence of a magnetic field and couples strongly to the ECDI when Te > Ti. How-

ever, they find that the IAW is never unstable, but the Bernstein roots are. However, when the full dispersion relation is
solved, the dependence ofγ/Ωce on Te/Ti is even weaker than suggested by Equation 6a. In fact,Forslund et al. [1972]
claims that there appears to be no real distinction between the cold and warm plasma solutions since the dependence of
γ/Ωce on Te/Ti is so weak. Even more, when Ti & Te, the largestγ ’s occur at the lower harmonics.

UsingΩce/ω pe ∼ 1/50, me/M i ∼ 1/1836, and Te/Ti ∼ 1, they find thatγ/Ωce increases rather dramatically for higher
harmonics as a function of Vd/VTe.
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7.2 Numerical Nonlinear Theory
Consider the case where the electric field parallel to the shock normal is zero, thus the canonical particle momentum in

that direction will be a constant for every particle. If we also consider a class of electrons whose undisturbed gyromotion
guiding centers result in a velocity, vn = (x · Vd /Vd) Ωce. Thus the total force along theVd direction (define as x) is given
by:

Fx = −e

[

−φ(x)+ xΩce
Bo

c

]

(12)

which gives an effective combined potential of:

Φ = −eφ +
me

2
(Ωcex)

2 (13)

where the second term simply describes the gyromotion, the electrostatic part,φ (x), remains tied to the ions and moves
with about Vd. The effect could be seen as a superposed ripple on the parabolic potential defined by the second term.

For the situation where (kλ De) < 1, and noting that (kλ De) ≃ ne (VTe/Vd), if V d & VTe, few electrons are resonant with
the wave. Note that the growth saturates as the perturbed electron velocities reach Vd, which means the electrons break
their frozen-in trajectories and start to become trapped in the potential wells of the waves. If no magnetic field is present,
this occurs at eφ o ≃ meVd

2/2, whereφ o is the magnitude of oscillations ofφ (x). However, the addition of a magnetic
field reduces the saturation level of eφ due to the Lorentz force termv × B. The equation of motion for an electron in an
oscillating electric field is given by:

vx = −
(

ieEx

meω

)

[

1+

(

Ωce

ω

)2
]−1

(14)

where we can replace Ex with -ikφ o (= -iφ o ω /Vd) for a wave traveling at velocity Vd with respect to the magnetic field.
If we also let vx = -Vd, then the trapping saturation estimate goes to:

eφ o = meV d
2

[

1−
(

Ωce

ω

)2
]

(15)

Note that in the low density regime one needs Vd & VTe to overcome the Debye-length cutoff and whenω ≃ Ωce the
saturation potential is greatly reduce. Whenω ≃ Ωce, the electrons respond by coiling up into ordered spirals inphase
space (i.e. gyrophase restricted) while the ions suffer considerable heating because of resonant breaking of theirfrozen-in
trajectories.

When the dominant modes satisfy 1< (k λ De) < 2π , a transistion behavior is observed. There is considerableelectron
heating in this regime.

When the dominant modes satisfy (kλ De) ≫ 2π , and if Vd < VTe andω pe/Ωce ≫ 1, as in the solar wind, the wave is
resonant with the bulk of the electron distribution. To modify the linear growth by a nonlinear distortion of the electron
velocity distribution, the electrons must have time execute a trapping oscillation in the potential wells. Unlike the field-
free case, the resonant interaction of the electrons with the wave is limited by the smaller of the following two: 1) the time
a gyrating electron remains in resonance with a wave (∼ Ωce

−1), or 2) the time that a well,φ (x), remains in existence [∼
(eφ o/me) (k/ΩceVd)]. From this, we can estimate the threshold for which electron trapping modifies the linear growth rate
as:

eφ o ≃ meV d
2

[

2π
(

Ωce

kV d

)2
]2/3

(16)

Note, however, that the potential estimated by Equation 16 tends to be a very small number. However, if a sufficiently
large number of electrons become trapped in the wells, the potentials will enhance an possibly grow to larger than the
thermal energy of the electrons. If this happens, the trapped electrons will be carried along by the potentials to be even-
tually released at a higher energy which increases the energy associated with gyration (since they released into the larger
magnetic potential well). In other words, the electrons arefirst energized along the shock normal and their increased
energy perpendicular to the magnetic field, thus they gain energy in the x-direction too! Also, if Vd ≪ VTe andφ is large
enough to trap electrons above their thermal energy, then the electrons remain trapped for much longer than a gyroperiod.
Their perturbed charge density is also shifted relative to the potentials.

The ion perturbed charge density, on the other hand, is almost entirely defined byφ (x) alone. Thus a phase shift is
produced between the perturbed charge density of each species which drives the magnitude ofφ well beyond the value in
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Equation 16. This makes the instability become very efficient at heating electrons. However, the nonlinear instabilityis
no longer resonant with the bulk of the ions but only their high energy tails.

7.3 Discussion
The anomalous resistance is ultimately caused by clumps of trapped electrons being pulled across the magnetic field

by the drifting density maxima of the ions. The electrons cause an effective drag on the ion drift causing the ions to lose
drift energy and gain thermal energy by breaking. This also causes the electrons to get heated by increasing their velocity
along the shock normal until they are pulled out of their potential wells (i.e. perpendicular heating). The requirement for
no net current along the shock normal direction causes the convective electric field to adjust itself to give anE × B drift
along the shock normal which cancels out the net drift of the electrons in that direction.

8 Lampe et. al., [1971]
Lampe et al. [1971a] examined the nonlinear development of the ECDI. If Vd > Cs, then the electron Bernstein modes

can couple to the IAWs. They also found that the ECDI saturations after a sufficient amplitude and mode converts to the
IAW. For warm plasmas, the IAWs are stabilized by Landau damping (i.e. parallel heating).

9 Matsukiyo and Scholer, [2006]
Matsukiyo and Scholer [2006] investigated microinstabilities at a perpendicular supercritical collisionless shock. They

used a 2D PIC simulation with realistic mass ratio (∼1836),β inc = 0.04,β re f = 0.01,β e = 0.05, nre f /ninc = 0.25, (ω pe/Ωce)2

= 4,∆t ∼ 0.02ω pe
−1, ∆x = ∆y = 0.5λ De ∼ 0.04 c/ω pe, Uinc/VA = +2.14, and Ure f /VA = -8.57. There are three instabilities

of interest, though they observed 6, ECDI, MTSI-1, MTSI-2.
The simulation geometry is shown as:
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The properties of the ECDI observed in this simulation can beseen as:

1. Free Energy Source: [reflected ion] - [incident electron] relative drift

2. kx ∼ nΩce/Ur, where Ur is the reflected ion speed

3. 0& kxc/ω pe & 10, -2& kyc/ω pe & 2

4. 1st two harmonics are seen

5. mostly inδEx andδBy, butVERY diffuse in kx-ky space

6. X-mode polarization⇒ compressionalδB

7. nonlinearly couples to MTSI-1

8. heats electrons strongly perpendicular to magnetic fieldand slightly heats reflected ions

The properties of the MTSI-1 observed in this simulation canbe seen as:

1. Free Energy Source: [incident ion] - [locally decelerated electron] relative drift

2. k mostly⊥-Bo

3. kx > 0 ⇒ anti-‖-n

4. ky is both positive and negative

5. 0& kxc/ω pe & 3, -0.5& kyc/ω pe & 0.5 (seen inδBz)

6. nonlinearly couples to ECDI

7. heats incident ions strongly and maintains their densityprofile

8. drives ES perpendicular whistler waves

The properties of the MTSI-2 observed in this simulation canbe seen as:

1. Free Energy Source: [reflected ion] - [incident electron] relative drift

2. k oblique-Bo

3. kx < 0 ⇒ ‖-n

4. ky is both positive and negative

5. 0& kxc/ω pe & 2, -1& kyc/ω pe & 1 (seen inδBz)

6. little to no heating of reflected ions

7. drives oblique EM whistler waves, electron holes

8. through a two-step heating process the effects of the MTSI-2 cause tremendous electron heating

The two-step heating process occurs in the following manner:

1. ECDI drives a perpendicular anisotropy in the electrons which is unstable to whistlers (seen inδBx andδBz)

2. the MTSI-2 drives oblique EM whistler waves and electron holes

3. the electron holes produce double-peaked electron velocity distribution functions which are unstable to EAWs (seen
in δEy) which strongly heat electrons‖-Bo

4. the electron temperature is observed to increase by a factor of∼5 while the ions only increase by∼5/4 for reflected
and∼2 for incident
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10 Tsutsui et. al., [1975]
Tsutsui et al. [1975] examined, in a lab plasma, the nonlinear decay of electron Bernstein modes into IAWs and ES

electron cyclotron harmonic waves (ECHWs).

11 Kumar and Tripathi, [2006]
Kumar and Tripathi [2006] examined electron Bernstein modes in the presence ofIAWs finding that they convert into

ECHWs. Electron beams can excite EM waves in two stages: 1) ESwave excitation through Cerenkov or slow cyclotron
interaction, and 2) ES wave undergoes resonance mode conversion into an EM wave under a density gradient or in the
presence of a low frequency mode. The electron Bernstein waves cause the electrons to oscillate with a velocity,vo, that
couples to the density perturbation,δn(ω ,k), due to the IAW. This coupling produces a nonlinear currentdensity at the
sum and difference frequency which generates ECHs.

If we assume that a Bernstein wave exists in a plasma with an ESpotential given by:

φ o = aoe−i(ωot−ko·r) (17)

whereko = kox x̂ + koz ẑ, kox ≫ koz, and an electron velocity distribution, fe = foe + δ fe, where foe is a Maxwellian andδ fe

is governed by the linearized Vlasov equation:

∂δ f e

∂ t
+ v ·∇(δ f e) = − e

me
∇φ o ·

∂ f oe

∂v
(18)

which results in a solution forδ fe going as:

δ f e =
2ie

meV Te
2 ( f oeφ o) I (19)

where:

I =
∞

∑
p=−∞

∞

∑
l=−∞

eJl(α)
(

ωo − pΩce − ko‖vz

)

[

iko⊥v⊥

2
(J p+1(α)+ J p−1(α))+ iko‖vzJ p(α)

]

(20)

whereα = ko⊥ v⊥/Ωce, θ = Tan−1(vy/vx) is the gyrophase angle, v⊥ = (vx
2 + vy

2)1/2, and they used the identity:

eiαSinθ =
∞

∑
l=−∞

Jl(α)eilθ (21)

From this, we can find the electron drift velocity due to the Bernstein mode as:

vo =

∫ ∞

0

∫ ∞

−∞

∫ 2π

0
dv⊥dvzdθ vv⊥ δ f e = uoφ o (22)

whereuo can be represented as:

uox =

(

2ω pe
2Ωce

2

eπV Te
3ko⊥ko‖

)[

l(l +1)I l(b)e−b + I′+
V Teko‖

4Ωce

(

1− ωo

ωo − lΩce

)

l I l(b)e−b
]

(23a)

uoy =

(

ω pe
2

2πeko‖V Te

)[

ko⊥

ko‖
(Ic − ID)+ (IE − IA)

(

1− ωo

ωo − lΩce

)]

(23b)

uoz =

(

ω pe
2Ωce

2πeko‖V Te
2

)(

1− ωo

ωo − lΩce

)

l I l(b)e−b (23c)
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where the terms I’, Ic, ID, IE, and IA are given as:

I′ = −
(

2ko⊥

ΩceV Te
2

)

IA −
(

3ko⊥
2

4Ωce
2V Te

2

)

(IB + Ic) (24a)

IA =
1

V Te
3

∫ ∞

0
dv⊥ Jl(α)Jl−1(α) v⊥

2e−(v⊥/V Te)
2

(24b)

IB =
1

V Te
4

∫ ∞

0
dv⊥ Jl

2(α)v⊥
3e−(v⊥/V Te)

2
(24c)

Ic =
1

V Te
4

∫ ∞

0
dv⊥ Jl(α)Jl+2(α)v⊥

3e−(v⊥/V Te)
2

(24d)

ID =
1

V Te
4

∫ ∞

0
dv⊥ Jl(α)Jl−2(α)v⊥

3e−(v⊥/V Te)
2

(24e)

IE =
1

V Te
3

∫ ∞

0
dv⊥ Jl(α)Jl+1(α)v⊥

2e−(v⊥/V Te)
2

(24f)

(24g)

where they assumed thatωo ≈ l Ωce and they retained only one term in Equation 20.
In addition to the Bernstein mode, there also exists a low frequency IAW or lower hybrid mode with potential,φ , of

the same form as Equation 17 and an electron density perturbation of the form:

δne =
k2

4πe
χφ (25)

whereχ is the electron susceptibility and can be of the form:

χ IAW = 2

(

ω pe

kV Te

)2

(for IAWs) (26a)

χLHW =

(

ω pek⊥

Ωcek

)2

−
(ω pi

ω

)2
−

(

ω pekz

k

)2

(for Lower Hybrid Mode.) (26b)

The density perturbation couples with thevo to produce a current,j1
NL (= -1/2 ne evo), with frequency,ω1 = ω + ωo, and

wave vector,k1 = k + ko. The frequency of the IAW needed for resonant coupling can beshown as:

ω IAW = kCs = Cs

√

(k1
2 + ko

2−2kok1Sinψ) (27)

where Cs is the ion-acoustic speed (≃
√

kBT e/Mi) andψ = Cos−1(k1 · Bo/k1Bo). The electric field of the EM wave
produced by the coupling can be written as (after considerable approximations) as:

E1 = 2π i
ω1nee

ω1
2− (k1c)2

(

vo −
c2k1(k1 ·vo)

ω1
2

)

(28)

11.1 Parametric Conversion of EM Wave to Bernstein Wave
Consider a circularly polarized EM wave near a cyclotron harmonic in a plasma with an electric field given by:

E1 = A1e
i(ω1t−k1z) (29)

whereA1 = A1x x̂ + A1y ŷ, A1x = -i A 1y, k1 = ω1/c [1 - ω pe
2/(ω1 {ω1 + Ωce})]. This wave oscillates the electrons at a

velocity given by:

v1 =
eA1x(x̂− iŷ)

me(ω1 + Ωce)
(30)

The pump wave decays into an IAW and Bernstein wave or LHW and Bernstein wave, each with potentials of the form
seen in Equation 17 andωo = ω - ω1, ko = k - k1. The Bernstein wave produces an oscillatory electron velocity, vo

= uo φ o, which was derived earlier. The density perturbation,δne, due to the IAW couples to the oscillatory velocity
v1 produced by the pump EM wave. This coupling between the density perturbation and oscillatory velocity produce a
nonlinear current density which drives the Bernstein wave at (ωo, ko).
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11.2 Discussion
Electron Bernstein waves, in the presence of low frequency high(low) wave number(length) IAWs, will efficiently

mode convert into EM radiation at the cyclotron harmonics. This radiation can far exceed background ifvo ∼ Cs. The
reverse process, parametric excitation of electron Bernstein waves, is also efficient for high temperature plasmas with
optimal growth for ko⊥ re ∼ 2 andγ/Ωci ∼ 1.
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