The Electron Cyclotron Drift Instability
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1 Acronyms
. Electron Cyclotron Drift Instability= (ECDI)

. Electron Cyclotron Harmonie (ECH)
. lon-Acoustic Waves= (IAWS)

. Electron-Acoustic Waves (EAWS)

1

2

3

4

5. Lower Hybrid Waves= (LHWSs)
6. Electrostatic= (ES)

7. Electromagnetie= (EM)

8. Modified Two-Stream Instability (MTSI)
9

. Let ECHWs include: Bernstein, totem-pole, and{1/2) waves
2 Other Names
1. Electron Cyclotron Drift Instability (ECDI)
2. Beam Cyclotron Instabilitylfampe et al., 1971a,b, 1972]
3. Electrostatic (ES) Electron-lon Streaming Instabflityong, 1970]
3 Ashour-Abdalla and Kennel €t. al., [19783a]
Ashour-Abdalla and Kennel [1978] examined nonconvective and convective ECHLs (h + 1/2)f.) finding:
1. ne controls which harmonic band can be excited through the upyerid frequency

2. Te controls the spatial amplification when 0< Te/T,. < 10~ = instability is nonconvective while larger values
will eventually cause the instability to become convective

3. if T/ The < 5 x 102, quasi-linear diffusion increases. Taster than resonant diffusion can heat/scatter hot elestr
into the loss-cone

4. if ne/nye ~ 3-5, the instability does not occur

4 Ashour-Abdalla and Kennel et. al., [1980]

Ashour-Abdalla et al. [1980] examined ECHlIs finding that the waves heated the delttrens perpendicular to the
field faster than parallel.



5 Forslund et. al., [1970]

Fordund et al. [1970] examined the electron cyclotron drift instabilisggDI), which is an instability that occurs when
ions drift relative to electrons, ) across a magnetic field. The dispersion relation he used was
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whereQe = e B/(me ¢), A + (K 1)%/2, A = 1/2 \/K,V1e/Qee, Te = V1l Qee, Ve = 2 To/me, and Z'(x) is the derivative of
the plasma dispersion function given by Z'&¢)-2 [1 + x Z(x)]. The plasma dispersion function can be writsen

Z(x) = |k|\/ﬁe”‘2— [1 2)1(34—4;3(5 ] (forx > 1) (2a)
Z(x )—|m\/7‘re*X2 [ x—gx3+1—5x5+---} (forx < 1) (2b)
Z/(x):—Ziﬁ\/ﬁxe’Xz—i— {X—12+%+41X56 ] (for x > 1) (2c)
Z(x)=— |k|\/ﬁxe {2—4x2+§x4+~~} (forx < 1) (2d)

The instability results from a resonance between the otisemurely electron cyclotron waves (ECWSs) and ions where
dFi/ov > 0, or where v< V4. Due to the resonance with the iongex for each harmonic occurs near MAXE/0v),
which is about atu/k ~ V4 - V1;. Note that for allwg < k V4, ¥/Qe > 0 = unstable growth. From this, one can see:

1. when (kApe) > 1, there is an attenuation gfoc (k Ape) ~#, which acts as a cutoff for large (koe)

2. for (kre) large, but (kA pe) < 1, all harmonics have roughly equas because the resonance condition isefky n,
Vel (Va - Vi)

3. when '\ > Vy and (kApe) < 1, (noting thatJ[Z'] ~ 1) y o Qe V4/Vre
4. y# y(me/Mi)

5. for larger values otv,/Qc, the Debye length cutoff occurs at smaller values g, = more harmonics grow
for largerwpe/ Qee

Due toy’s dependence ofl[Z'], there is a strong interaction between the ECWs and iades. Note also that/T; has
little effect ony. Since the Debye length cutoff implies the instability issheffective wherwpe ~ Qce for V4 > Ve, we
assume thaw/k > V1, and> Vy;. Using these assumptions, we can reduce Equation 1 to toeviiod):

O‘)pez wpezrne/Mi

1:
W= Qe (w—kVg)?

®3)

which nicely reduces to the usual two-stream instabilitydge/Q. > 1. Equation 3 represents an interaction between
the upper hybrid and a Doppler-shifted lower hybrid mode.
There are three conditions which can squelch the instabilit

1. when \, — 0 (which could result from field diffusion due to the instatyiitself)
2. when the instability heats the electrons to the Debygtteautoff

3. when the ions are resonantly heated until the MBJ%(]) for the fundamental is very small and/or lies beyoné th
Debye-length cutoff

When Vi > V4 and wp/Qc > 1, the instability will preferentially heat the ions insteaf the electrons. Since the
resonance occurs near the MA?K/dv), the ECDI can be an effective ion heating mechanism. Iitaafcto heating the
plasma, the ECDI produces an anomalous resistivity whiasesa drift and diffusion across the magnetic field.

The ECDI is mostly a longitudinal instability until the pites become relativistic and it does not appear to be aftect
by finite Be.



6 Forslund et. al., [1971]

Fordlund et al. [1971] examined the nonlinear ECDI, finding significant &lec heating due to adiabatic and non-
adiabatic trapping. The ions were heated as well due toimgp|$o the electrons are dragged across the magnetic field
by the drifting ions, which produces an effective drag onitims causing them to break tfr@zen-in condition and gain
some thermal energy while losing bulk kinetic. Also, iomijpang does not reduce the heating rate.

7 Forslund et. al., [1972]

Fordund et al. [1972] examined the ECDI, examining the perpendicular salons resistivity it causes at collisionless
shocks and in lab plasmas. They consider a relative driftbetween electrons and ions that is perpendicular to beth th
magnetic field and the shock normal. They treat the ion ttajigs as straight because thep, > Qq. If one assumes

thatA > 1, then one can approximate:
1
= ~y
e I“()\)_‘/ZHA (4)

They also assume that the plasma dispersionn functiond #re form:

1ol wR - k . Vd

Zi=7 {7kvﬂ } (5a)
Wr — NQce

Z.=27 5b
“] =)

As one might expect, the largest valuesyafccur when k — 0, which results inJ[Z] = 0[Z’ ] = 0. This simplifies the
growth rate calculation and real frequency result to:

A ~ No Te/(ZTi)D[Z/i] (6a)
Qe V/TKIe | [1+ (KApe)2 — (Te/2T)D[Z4]2 + [(Te/2T)D[Z/] 2
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If we drop the term associated with[Z’ ;] in the denominator of Equation 6a (typically okay whenT;), and noting
that MAX(J[Z'{]) ~ 1.5 (when its argument is -0.7), then Equations 6a and 6b reduce to:

Vo M (T_> 3/2 (7a)
Qe V/7Kre \2Ti ) | [14 (KAoe)2)” +[(3Te/4T)) 2
WR — k . Vd
assumingug ~ NQ. and Co® = k - Vy/(k Vy), then we can reduce Equations 7a and 7b down to:

NQce
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where | have ignored any electron-electron or electrorcahisions.
Not that for all harmonics with (Rpe) < 1, Yimx 7# Ymax(N, M/M;) and occurs at the same k= k Cos9) for all k_ in
the plane perpendicular &. In this case, the last term in the brackets of Equation 8aaeslto unity leaving the growth

rate to be:
v CoB (Va) (T @
Qe /T \Vre 2T;

3



The expected turbulence fills a relatively wide range of asgh the plane perpendicular &, but parallel toV.
Anisotropic heating due to cyclotron interactions can deathis fan-like resonance into a cone that extends into the
plane containing,. From Equation 8c when (ko) > 1, there is a strong Debye-length cutofik A ,.) ~* which allows

us to estimate an approximate instability criterion:

Vd > n ch
Ve ™ C0s8 /2wy

(10)

From the full resonance condition (Equation 8a) one canlsasdftVy — > V4, then k— > Debye-length cutoff for all
harmonics. Thus one also must demand thaP\W+; for an instability to occur.
There are four possible ways to stabilize this instability:

1. V, is reduced by resistive broadeningky

2. Ve is increased by resistive heating which results in suceelysiower harmonics being stabilized until the=n
1 (fundamental) is stabilized atX¥/1. ~ Qc/wpe. The primary electron heating will be perpendiculaBtg vari-
ous longitudinal and transverse instabilities driven e/ ithsulting anisotropy could rapidly convert some electron
thermal energy into parallel momentum, thus producingegiffely an increase in electron thermal conductivity.

3. Vg can be increased by heating until ¥ V+;, however this is less likely than (1) or (2) because eleclreating
is more effective

4. plasma compressiah-B, can reduc&../wpe by 1/N,/N; = increases the instability threshold.

When considering the full dispersion relation (not shovihgre are effects to consider whepsk 0 that enter through
Z' e (= Z'[(wr - N Qe)/(K Vre)]) in the combinations 1/2][Z’ ] and (1 +[J[Z’ ¢]/2). Both of these terms go to zero (from
above and below, respectively) for argumento, and through their quotienti(Z’ ]/2)/(1 + O[Z’ ¢]/2) [argument= oo(0)
— 0(-, from the k > 0 side)]. However, when all terms are consideng@.. decreases monotonically increasing
k;. The cutoff occurs when the argument ot 2> 1, thus (g - NQc)/Qc ~ n/(y/TTk re) and the resonance condition
simplifies towgr/k ~ V4 Cosf. If we assume (R pe) < 1, then the spread in kan be shown to be:

K n 2 1 VCos8 \ 2

— < —(kre) =~ | — 11

K R <ﬁn)< vTe) (1)
The spread in kis less for higher harmonics and in general, much narroveer tbr k . The damping which limits k

is cyclotron, NOT Landau, damping! Thus, as the Debye-Iefigt collisional) cutoff of a harmonic is approached and
exceeded, its kspread— 0. The important conclusions are:

1. an instability still exists if a weak magnetic field and~F T; but does not exist if the magnetic field 0
2. the instability is difficult to stabilize (linearly) withut significant magnetic field diffusion or electron heating
3. electron collision frequenay y is required to stabilize

4. instability occupies a broad cone of angles in the plar®, but a very narrow cone of angles in the pldnrB,

7.1 Analytical Linear Theory

The IAW mode still exists in the presence of a magnetic field @suples strongly to the ECDI when $ T;. How-
ever, they find that the IAW is never unstable, but the Beingteots are. However, when the full dispersion relation is
solved, the dependence g, on T./T; is even weaker than suggested by Equation 6a. In Facund et al. [1972]
claims that there appears to be no real distinction betweeicdld and warm plasma solutions since the dependence of
y/Qe ONn T/T; is so weak. Even more, when F T, the largesy’s occur at the lower harmonics.

Using Qce/ wpe ~ 1/50, m/M; ~ 1/1836, and TT; ~ 1, they find thaty/Q. increases rather dramatically for higher
harmonics as a function of YW/ .



7.2 Numerical Nonlinear Theory

Consider the case where the electric field parallel to thelshormal is zero, thus the canonical particle momentum in
that direction will be a constant for every particle. If we@konsider a class of electrons whose undisturbed gyromoti
guiding centers result in a velocity, ¥ (X - V4/Vy) Qe. Thus the total force along thé, direction (define as x) is given
by:

Fy=—e {—q)(x) +xQoe%] (12)
which gives an effective combined potential of:
= —ep+ % (Qeex)? (13)

where the second term simply describes the gyromotion, ldatrestatic partgp(x), remains tied to the ions and moves
with about ;. The effect could be seen as a superposed ripple on the piarpbiential defined by the second term.

For the situation where (kpe) < 1, and noting that (R pe) ~ ne (V1e/V4), if V4 2 Ve, few electrons are resonant with
the wave. Note that the growth saturates as the perturbetiaievelocities reach )/ which means the electrons break
their frozen-in trajectories and start to become trapped in the potentiid wkthe waves. If no magnetic field is present,
this occurs at @, ~ m.V42/2, whereg, is the magnitude of oscillations @f(x). However, the addition of a magnetic
field reduces the saturation level ap due to the Lorentz force termx B. The equation of motion for an electron in an

oscillating electric field is given by:
Ve = — 1+ —
mew w

where we can replace®vith -ik @, (= -i@, w/V,) for a wave traveling at velocity Ywith respect to the magnetic field.
If we also let v = -V, then the trapping saturation estimate goes to:

(%)

W
Note that in the low density regime one needsX V+. to overcome the Debye-length cutoff and when~ Q. the
saturation potential is greatly reduce. When~ Q, the electrons respond by coiling up into ordered spirajshiase
spacei(e. gyrophase restricted) while the ions suffer considerabiging because of resonant breaking of tfreizen-in
trajectories.

When the dominant modes satisfyd(k Ape) < 211, a transistion behavior is observed. There is considerdbtgron
heating in this regime.

When the dominant modes satisfyAke) > 211, and if V; < Ve and wp/Qc > 1, as in the solar wind, the wave is
resonant with the bulk of the electron distribution. To nfgdhe linear growth by a nonlinear distortion of the eleatro
velocity distribution, the electrons must have time exeautrapping oscillation in the potential wells. Unlike theldr
free case, the resonant interaction of the electrons withvéve is limited by the smaller of the following two: 1) theg
a gyrating electron remains in resonance with a wav€)(. 1), or 2) the time that a wellp(x), remains in existence-
(epo/me) (k/IQV4)]. From this, we can estimate the threshold for which etectrapping modifies the linear growth rate
as:

(14)

ePo = rnevdz (15)

2/3

2n<k§3;:)2] (16)

Note, however, that the potential estimated by Equationehélg to be a very small number. However, if a sufficiently
large number of electrons become trapped in the wells, thengials will enhance an possibly grow to larger than the
thermal energy of the electrons. If this happens, the trdygtectrons will be carried along by the potentials to be even
tually released at a higher energy which increases the g@asspciated with gyration (since they released into thgelar
magnetic potential well). In other words, the electronsfast energized along the shock normal and their increased
energy perpendicular to the magnetic field, thus they gaénggnin the x-direction too! Also, if Y <« V1. and@ is large
enough to trap electrons above their thermal energy, thealdttrons remain trapped for much longer than a gyroperiod
Their perturbed charge density is also shifted relativéaéogotentials.

The ion perturbed charge density, on the other hand, is alemsely defined byp(x) alone. Thus a phase shift is
produced between the perturbed charge density of eachespghich drives the magnitude @fwell beyond the value in

eQ, ~ MV 42




Equation 16. This makes the instability become very effica#reating electrons. However, the nonlinear instabidity
no longer resonant with the bulk of the ions but only theithégergy tails.

7.3 Discussion

The anomalous resistance is ultimately caused by clumpsppéd electrons being pulled across the magnetic field
by the drifting density maxima of the ions. The electronsseaan effective drag on the ion drift causing the ions to lose
drift energy and gain thermal energy by breaking. This atsgses the electrons to get heated by increasing their teloci
along the shock normal until they are pulled out of their ptte wells (.e. perpendicular heating). The requirement for
no net current along the shock normal direction causes theective electric field to adjust itself to give &x B drift
along the shock normal which cancels out the net drift of teeteons in that direction.

8 Lampeet. al., [1971]

Lampeet al. [1971a] examined the nonlinear development of the ECDI 4If\C;, then the electron Bernstein modes
can couple to the IAWSs. They also found that the ECDI satonatafter a sufficient amplitude and mode converts to the
IAW. For warm plasmas, the IAWSs are stabilized by Landau damfi.e. parallel heating).

9 Matsukiyo and Scholer, [2006]

Matsukiyo and Scholer [2006] investigated microinstabilities at a perpendicslgpercritical collisionless shock. They
used a 2D PIC simulation with realistic mass ratid.836),Bin. = 0.04,B¢; = 0.01,B¢ = 0.05, Rer/Minc = 0.25, (pe/Qce)?
=4,At~ 0.02wpe*1, AX = Ay = 0.5A pe ~ 0.04 Cloge, Uine/Va = +2.14, and UL /V o = -8.57. There are three instabilities
of interest, though they observed 6, ECDI, MTSI-1, MTSI-2.

The simulation geometry is shown as:
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The properties of the ECDI observed in this simulation capd®n as:
Free Energy Source: [reflected ion] - [incident electron] relative drift
k« ~ nQ./U,, where U is the reflected ion speed

02 KeCltwpe 2 10, -22 K,Cltpe = 2

1st two harmonics are seen

mostly indE, anddBy, butVERY diffuse in k-k, space

X-mode polarization- compressionadB

nonlinearly couples to MTSI-1

© N o 0o M w0 NP

heats electrons strongly perpendicular to magnetic fiettislightly heats reflected ions
The properties of the MTSI-1 observed in this simulation barseen as:
1. FreeEnergy Source: [incidention] - [locally decelerated electron] relativeftl
. k mostly 1-B,
. k> 0= anti|-n

. ky is both positive and negative

2
3
4
5. 02 KyClwge 2 3, -0.52 kyClwpe 2 0.5 (seen iMB,)
6. nonlinearly couples to ECDI
7. heats incident ions strongly and maintains their densibyjile
8. drives ES perpendicular whistler waves
The properties of the MTSI-2 observed in this simulation lbarseen as:
1. Free Energy Source: [reflected ion] - [incident electron] relative drift
. k obliqueB,
. ke<O0=|-n

. ky is both positive and negative

2
3
4
5. 02 KyClwpe = 2, -1 2 kyClwpe = 1 (S€EN INOB,)
6. little to no heating of reflected ions
7. drives oblique EM whistler waves, electron holes
8. through a two-step heating process the effects of the MI&luse tremendous electron heating
The two-step heating process occurs in the following manner

1. ECDI drives a perpendicular anisotropy in the electroh&tvis unstable to whistlers (seendB, anddB;)

2. the MTSI-2 drives oblique EM whistler waves and electroteb

3. the electron holes produce double-peaked electroniteltistribution functions which are unstable to EAWSs (seen
in OE,) which strongly heat electronsB,

4. the electron temperature is observed to increase byar fafct-5 while the ions only increase by5/4 for reflected
and~2 for incident



10 Tsutsui et. al., [1975]

Tsutsui et al. [1975] examined, in a lab plasma, the nonlinear decay otreledBernstein modes into IAWs and ES
electron cyclotron harmonic waves (ECHWS).

11 Kumar and Tripathi, [2006]

Kumar and Tripathi [2006] examined electron Bernstein modes in the presenidd\és finding that they convert into
ECHWs. Electron beams can excite EM waves in two stages: @8 excitation through Cerenkov or slow cyclotron
interaction, and 2) ES wave undergoes resonance mode stmvénto an EM wave under a density gradient or in the
presence of a low frequency mode. The electron Bernsteiesveause the electrons to oscillate with a veloeitythat
couples to the density perturbatiadn(w,k), due to the IAW. This coupling produces a nonlinear curdentsity at the
sum and difference frequency which generates ECHSs.

If we assume that a Bernstein wave exists in a plasma with gooetial given by:

9o — age (@0t Kor) (17)

wherek, = Kox X + Koz 2, Kox > Koz, and an electron velocity distribution, £ e + 0fe, where f. is a Maxwellian andf.
is governed by the linearized Vlasov equation:

006f. e O0fee
T‘FV'D((Sfe)——ED(Do'W (18)
which results in a solution fadfe going as:
2ie
Ofe=——— (foe®o)| 19
%VTez( ®o) (19)
where:
2 eJi(a) ik, v, .
| = J Jo- J 20
32 ooty |2 (@) (@) +ikgvdy(a) (20)
wherea = ky, V,/Qc, 6 = Tan 1(v,/v,) is the gyrophase angle, v= (v + v,?)%?2, and they used the identity:
eiorS'nB _ Z Jl(a)eile (21)
|=—o00
From this, we can find the electron drift velocity due to therigein mode as:
0 proo 27T
Vo = / / / dv, dv,d6 W, &fe = Uo®o 22)
0 J-wlJo
whereu, can be represented as:
o 2Os)pezgzcez b / VTekoH Wo b
Uox = (m) [I(I+1)I|(b)e +1'+ a0, 1- 10, I'l,(b)e (23a)
(o [k (1o @
e (ZnekOVTe) [ko (o=lo)+ (e =) (1 wo—Ich)} (230)
[ @p"Qee W b
Uoz = (ZnekovTez) (1 wo—che)l l(b)e (23c)



where the terms I',d I, Ig, and |, are given as:

2 3K, 2

I/__<Q &2>'A_<4Qk02§h2>('3+|c> e

= \% / dv. 3y (@)d s (ar) v, 2e (Ve (24b)
Te” JO

ls = \% / dv, le(a)vL3e7(vL/VTe)2 (24c)
Te JO

le= \% /(; dv, J, (G)Jl+2(a)VL3e7(VL/VT8)2 (24d)
Te -

lo= g [ V. (@3 (e, % N (24e)
Te JO

o= g | OV 3@ (@ e e (241)
Te™ JO

(249)

where they assumed that ~ | Q. and they retained only one term in Equation 20.
In addition to the Bernstein mode, there also exists a logufeacy IAW or lower hybrid mode with potentiap, of
the same form as Equation 17 and an electron density petitumte the form:
k2
one=— 25
e = X ® (25)

wherey is the electron susceptibility and can be of the form:

2
o ( Dpe ) (for IAWS) (26a)
I(\/Te
[ wpeky 2 Wpi\ 2 Wpek, 2 .
XiHw = ( Ok ) — (E) e (for Lower Hybrid Mode.) (26b)

The density perturbation couples with theto produce a curren,N- (= -1/2 n. e v,), with frequencyw, = w + w,, and
wave vectork,; = k + k,. The frequency of the IAW needed for resonant coupling cashioevn as:

Wy = kCo = Cay / (ki2 + ko2 — ZkekySinyy) 27)

where G is the ion-acoustic speed-(,/ksTe/M;) and ¢y = Cos 1(k; - Bo/k;B,). The electric field of the EM wave
produced by the coupling can be written as (after considegtproximations) as:

Wi Nee (Vo B czkl(kl.vo))

E1 =27 70012 — (k10)2 0)12

(28)
11.1 Parametric Conversion of EM Waveto Bernstein Wave
Consider a circularly polarized EM wave near a cyclotromtraric in a plasma with an electric field given by:

E, = A é(@rt-k?) (29)

whereA; = A X+ Ay Y, Ay = -1 Ay, ki = wi/c [1 - wpe’l(w; {w, + Qee})]. This wave oscillates the electrons at a
velocity given by:

eA(X—1Y)

Me( 01 + Qce)
The pump wave decays into an IAW and Bernstein wave or LHW agrth&ein wave, each with potentials of the form
seen in Equation 17 an@d, = w - w:, ko = k - k;. The Bernstein wave produces an oscillatory electron viglog,

= U, @, Which was derived earlier. The density perturbatidon,, due to the IAW couples to the oscillatory velocity
v, produced by the pump EM wave. This coupling between the tlepsiturbation and oscillatory velocity produce a
nonlinear current density which drives the Bernstein waveva, Ko).

(30)

1=

10



11.2 Discussion

Electron Bernstein waves, in the presence of low frequengly(low) wave number(length) IAWs, will efficiently
mode convert into EM radiation at the cyclotron harmonickisTadiation can far exceed backgrounddf~ Cs. The
reverse process, parametric excitation of electron Beimstaves, is also efficient for high temperature plasmak wit
optimal growth for k, re ~ 2 andy/Q, ~ 1.
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