
FLIGHT OF A BATTED BASEBALL 

 
Lance Wheeler 

Department of Physics 

St. John’s University 

Collegeville, MN 56321-7155 
April 10, 2007 

 
ABSTRACT 

 

The Fortran 90 computer language was used to create an accurate simulation of the flight of a baseball after 

making contact with the bat.  A two-dimensional analysis of the forces on the baseball during the flight was 

produced using Newtonian projectile motion equations as a function of time.  Using input variables of bat 

velocity, ball velocity, and trajectory of the ball off the bat, the program “long_ball” plots the flight of the 

batted baseball and prints the total distance of the ball.  Holding chosen variables to be constant to simulate 

the flight in windless stadium at sea level, the program gives most notable insight on the necessary 

parameters for a ball to travel home run distance. 

 

INTRODUCTION 

 

Projectile motion is one of the first concepts 

physics major will encounter.  Students use 

Newton’s laws to determine the height, distance, 

time, and components of velocity and 

acceleration.  To expand on these concepts 

“long_ball” takes into account drag and lift 

forces in addition to gravity.  The force of drag 

and lift are not constant and depend on 

experimentally measured coefficients.  The 

coefficients used in the program are found in the 

research of Robert K. Adair.  Velocity of the 

baseball off the bat is also an experimentally 

measured relationship.  The model used was 

built on the research done by Alan M. Nathan.  

The program assumes a collision at the node of 

the bat which is the ideal placement for 

maximum resulting velocity.  This is what is 

known in the baseball world as the “sweet spot.”  

Because of this assumption, the program is the 

best applied as a simulation of home run hitting. 

 

As the number of home runs continue to rise in 

Major League Baseball, the demand for 

explanation increases.  Current research has 

developed more accurate models of pitching, 

batting, and post-impact flight of a base ball.  

Research done by Sawicki, Hubbard, and 

Stronge has even disproved the age-old 

assumption that fast-balls can be hit further than 

curve-balls.  Lift has been found to be a large 

contributor to distance. The lift coefficient is 

found to be function of spin.  Since curve-balls 

have more spin, an optimally hit curve-ball will 

have more lift and, therefore, more distance, than 

an optimally hit fast-ball.   

 

To apply current research of the flight of a 

baseball and the physics of projectile motion to 

computer programming, Fortran 90 was an ideal 

choice because of the built-in mathematical and 

array functions.  These functions, as well as loop 

and “if” statement techniques, were utilized to 

calculate the range of velocities and positions of 

the baseball after collision with the bat.  The 

ready-to-use libraries also made Fortran 90 a 

convenient choice.  The “pgplot” library was 

employed to plot the array calculations of 

position of the baseball.    

 

DETERMINING LAUNCH SPEED 
 

There are many factors to take into account when 

calculating the exit speed of the ball after the 

collision with the bat.  The primary factors are 

the speed of the ball and the speed of the bat.  

However, the vibration energy transferred as a 

result of the collision Ro plays an important role.  

Nathan expresses this relationship as 
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Where rγ is the radius of gyration. zk is the 

location of the kth slice (the impact point) and 

zcm is the centers of mass, which were assumed 

to be equal for the program.  This means the 

baseball contacts the node, or the “sweet spot” of 

the bat.  The equation then reduces to 
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The mass of a baseball mball is .145 kg and the 

mass of the bat M is .885 kg. This means Ro is a  

constant.  Ro is then related to ball velocity and 

bat velocity to produce the following equation 

that leads to launch velocity. 
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Where eeff is an effective coefficient of restitution 

approximated to be .69 when used in the 

program. After the velocity of the ball vball and 

bat vbat are inputted by the user of the program, 

equation (3) determines the launch velocity of 

the baseball after collision.   

 

POSITION OF A BASEBALL IN FLIGHT 
 

Calculating the position of a baseball in flight 

begins by breaking down the forces acting on it.  

 
Figure 1 

Diagram of the forces acting on a baseball in 

flight.  The Drag force is always opposite the 

launch velocity as the angle θ of velocity 

changes.  The force of lift is always 

perpendicular to the Drag force and the velocity.  

Gravity will always be a downward force on the 

baseball. 

 

Adair presents the relation for the force of drag 

on a sphere as 

 

Fdrag =
Cd Aρv
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Here A = π r ², with the r = .0366 m as the 

radius of the baseball, ρ = 1.23 kg/m³ is the 

density of the air, v is the velocity, and Cd is the 

drag coefficient.  For Cd =2, this is just the force 

required to move a column of air the size of the 

ball to match the velocity of the ball.  A Cd =.5 

was chosen for the program because it has been 

found to be the most accurate for a baseball.   

 

The force of lift is similar to the drag relation 

and is expressed 
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A, ρ, and v are the same values as in the drag 

expression, but Cl is not found to be a constant 

coefficient as in the drag force.  It strongly 

depends on the spin parameter which is  
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Where r, ω, and v are the radius of the ball, the 

spin in rpm, and velocity, respectively.  The 

program assumes an initial spin of 500 rpm 

which is typical of a home run distance hit.  

According to Adair, the spin decreased at a rate 

of 1/5
th

 of the spin per second.  Sawicki, 

Hubbard, and Stronge suggest the spin parameter 

relates to the Cl by 

 

Cl = 1.5S               S ≤ 0.1 

                                                                          (7) 
Cl = 0.09 + 0.6S    S > 0.1 

 

As the spin and velocity decrease and change the 

spin parameter, the coefficient of lift will reach a 

critical point and change accordingly.  This is 

calculated in the program by placing an “if” 

statement inside of a “do” loop to simulate the 

change in spin parameter.  The force of lift, drag, 

and gravity can be combined in classical 

mechanics using Newton’s second law. 

 

Flift+ Fdrag+ Fgravity = mball a                   (8) 

 

Where a is the acceleration of the baseball.  

Solving equation (8) for a and breaking into x 

and y components we get 

 

ax =
−Flift Sinθ−Fdrag Cosθ
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And 

ay =
Flift Cosθ− Fdrag Sinθ− Fgravity
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By substituting equations (9) and (10) into a 

classical projectile motion equation, we are able 



to find the velocity components as a function of 

time of the baseball in flight 
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And  
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With the components of velocity, expressions for 

the height and distance can now be found using 

the following recurrence relation: 

 
xi =vx t+xi−1                                       (13) 
 

And 

 
yi =vy t+yi−1                                       (14)                 
 

In equations 11 –14, t is a differential unit of 

time.  The program uses a t of .01, which means 

the position of baseball is calculated 100 times 

for every second the baseball is in flight.  Since 

the average flight of a baseball is about 5 

seconds, the number of iterations i of the “do” 

loop is 10,000 to ensure it plots the entire flight 

of the baseball.  When the baseball reaches a 

height of zero, an “if” statement stops the loop. 

 

CONCLUSIONS 

 

Current research on the physics of baseball has 

been to create used to create an accurate model 

of a batted baseball in flight.  There are factors in 

the model that are neglected to simplify the 

program.  Most notably, an ideal collision 

between the bat and baseball are assumed.  This 

is not reasonable in an average game of baseball, 

but it is more applicable to an event such as a 

home run derby.  The spin of the pitch was 

assumed to have no effect on the resulting spin 

of the ball after impact with the bat.  Air pressure 

and wind could be neglected by assuming the 

ball is hit in a dome at sea level elevation.  Under 

these assumptions, “long_ball” presents an 

accurate simulation of a baseball traveling home 

run distance.     
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