Equations for PHYS 320 Test 1
$t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}$
$f=f_{0} \sqrt{1-v^{2} / c^{2}}$
$f=f_{0} \sqrt{\frac{1+v / c}{1-v / c}}$
$f \lambda=c$
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$x^{\prime}=\gamma(x-v t) \quad y^{\prime}=y \quad z^{\prime}=z \quad t^{\prime}=\gamma\left(t-v x / c^{2}\right)$
$V_{x^{\prime}}=\frac{V_{x}-v}{1-\frac{V_{x} v}{c^{2}}} \quad V_{y^{\prime}}=\frac{V_{y}}{\gamma\left(1-\frac{V_{x} v}{c^{2}}\right)} \quad V_{z^{\prime}}=\frac{V_{z}}{\gamma\left(1-\frac{V_{x} v}{c^{2}}\right)}$
Inverses:
$x=\gamma\left(x^{\prime}+v t^{\prime}\right)$, etc.

Also:
$\vec{p}=\gamma_{v} m \vec{v}$
$E=\gamma m c^{2}$
$E^{2}=\left(m c^{2}\right)^{2}+(p c)^{2}$
$(\Delta s)^{2}=(c \Delta t)^{2}-(\Delta x)^{2}$

